Skip to main content
Log in

Glutathione Depletion and Parkinsonian Neurotoxin MPP+-Induced TRPM2 Channel Activation Play Central Roles in Oxidative Cytotoxicity and Inflammation in Microglia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is one of most common neurodegenerative diseases. Environmental stressors such as oxidative stress (OS), calcium ion influx, apoptosis, and inflammation mechanisms are linked to activated microglia in patients with PD. The OS-dependent activated transient receptor potential melastatin 2 (TRPM2) channel is modulated in several neurons by glutathione (GSH). However, the cellular and molecular effects of GSH alteration on TRPM2 activation, OS, apoptosis, and inflammation in the microglia remain elusive. The microglia of TRPM2 wild-type (TRPM2-WT) and knockout (TRPM2-KO) mice were divided into control, PD model (MPP), l-buthionine sulfoximine (BSO), MPP + BSO and MPP + BSO + GSH groups. MPP-induced increases in apoptosis, death, OS, lipid peroxidation, PARP1, caspase-3 and caspase-9, inflammatory cytokines (IL-1β, TNF-α, IL-6), and intracellular free Zn2+ and Ca2+ levels in the microglia of TRPM2-WT mice were further increased by the BSO treatment, although they were diminished by the GSH treatment. Their levels were further reduced by PARP1 inhibitors (PJ34 and DPQ) and TRPM2 blockers (ACA and 2-APB). However, the effects of MPP and BSO were not observed in the microglia of TRPM2-KO mice. Taken together, our data demonstrate that maintaining GSH homeostasis is not only important for quenching OS in the microglia of patients with PD but also equally critical to modulating TRPM2, thus suppressing inflammatory responses elicited by environmental stressors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

[Ca2+]i :

Intracellular free calcium ion

2-APB:

2-Aminoethoxydiphenyl borate

ACA:

N-(p-Amylcinnamoyl) anthranilic acid

BSO:

l-Buthionine-sulfoximine

CASP:

Caspase

DRG:

Dorsal root ganglion

GSH:

Glutathione

MDA:

Malondialdehyde

MPP:

1-Methyl-4-phenylpyridinium

OS:

Oxidative stress

PARP1:

Poly[ADP-ribose] polymerase 1

PD:

Parkinson’s disease

TRPM2:

Transient receptor potential melastatin 2

TRPM2-KO:

TRPM2 knockout

TRPM2-WT:

TRPM2 wild type

VGCC:

Voltage-gated calcium channels

References

  1. Simon DK, Tanner CM, Brundin P (2020) Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med 36(1):1–12. https://doi.org/10.1016/j.cger.2019.08.002

    Article  PubMed  Google Scholar 

  2. Massaquoi MS, Liguore WA, Churchill MJ, Moore C, Melrose HL, Meshul CK (2020) Gait deficits and loss of striatal tyrosine hydroxlase/trk-b are restored following 7,8-dihydroxyflavone treatment in a progressive MPTP mouse model of Parkinson’s disease. Neuroscience. 433:53–71. https://doi.org/10.1016/j.neuroscience.2020.02.046

    Article  CAS  PubMed  Google Scholar 

  3. Tamilselvam K, Braidy N, Manivasagam T, Essa MM, Prasad NR, Karthikeyan S, Thenmozhi AJ, Selvaraju S et al (2013) Neuroprotective effects of hesperidin, a plant flavanone, on rotenone-induced oxidative stress and apoptosis in a cellular model for Parkinson’s disease. Oxidative Med Cell Longev 2013:102741–102711. https://doi.org/10.1155/2013/102741

    Article  CAS  Google Scholar 

  4. Macchi B, Di Paola R, Marino-Merlo F, Felice MR, Cuzzocrea S, Mastino A (2015) Inflammatory and cell death pathways in brain and peripheral blood in Parkinson’s disease. CNS Neurol Disord Drug Targets 14(3):313–324. https://doi.org/10.2174/1871527314666150225124928

    Article  CAS  PubMed  Google Scholar 

  5. Nazıroglu M, Oz A, Yildizhan K (2020) Selenium and neurological diseases: focus on peripheral pain and TRP channels. Curr Neuropharmacol 18. https://doi.org/10.2174/1570159X18666200106152631

  6. Kierdorf K, Prinz M (2013) Factors regulating microglia activation. Front Cell Neurosci 7:44. https://doi.org/10.3389/fncel.2013.00044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gutmann DH, Kettenmann H (2019) Microglia/brain macrophages as central drivers of brain tumor pathobiology. Neuron 104(3):442–449. https://doi.org/10.1016/j.neuron.2019.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang S, Wang R, Wang G (2019) Impact of dopamine oxidation on dopaminergic neurodegeneration. ACS Chem Neurosci 10(2):945–953. https://doi.org/10.1021/acschemneuro.8b00454

    Article  CAS  PubMed  Google Scholar 

  9. Yoshioka Y, Sugino Y, Shibagaki F, Yamamuro A, Ishimaru Y, Maeda S (2020) Dopamine attenuates lipopolysaccharide-induced expression of proinflammatory cytokines by inhibiting the nuclear translocation of NF-kappaB p65 through the formation of dopamine quinone in microglia. Eur J Pharmacol 866:172826. https://doi.org/10.1016/j.ejphar.2019.172826

    Article  CAS  PubMed  Google Scholar 

  10. de Araujo FM, Ferreira RS, Souza CS, Dos Santos CC, Rodrigues T, JHC ES, Gasparotto J, Gelain DP et al (2018) Aminochrome decreases NGF, GDNF and induces neuroinflammation in organotypic midbrain slice cultures. Neurotoxicology 66:98–106. https://doi.org/10.1016/j.neuro.2018.03.009

    Article  CAS  PubMed  Google Scholar 

  11. Zhang J, Culp ML, Craver JG, Darley-Usmar V (2018) Mitochondrial function and autophagy: integrating proteotoxic, redox, and metabolic stress in Parkinson’s disease. J Neurochem 144(6):691–709. https://doi.org/10.1111/jnc.14308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bonilla-Porras AR, Jimenez-Del-Rio M, Velez-Pardo C (2019) N-Acetyl-cysteine blunts 6-hydroxydopamine- and L-buthionine-sulfoximine-induced apoptosis in human mesenchymal stromal cells. Mol Biol Rep 46(4):4423–4435. https://doi.org/10.1007/s11033-019-04897-2

    Article  CAS  PubMed  Google Scholar 

  13. Yang SJ, Yang JW, Na JM, Ha JS, Choi SY, Cho SW (2018) 3-(Naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride attenuates MPP-induced cytotoxicity by regulating oxidative stress and mitochondrial dysfunction in SH-SY5Y cells. BMB Rep 51(11):590–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Korvers L, de Andrade Costa A, Mersch M, Matyash V, Kettenmann H, Semtner M (2016) Spontaneous Ca(2+) transients in mouse microglia. Cell Calcium 60(6):396–406. https://doi.org/10.1016/j.ceca.2016.09.004

    Article  CAS  PubMed  Google Scholar 

  15. Nazıroğlu M, Luckhoff A (2008) Effects of antioxidants on calcium influx through TRPM2 channels in transfected cells activated by hydrogen peroxide. J Neurol Sci 270(1–2):152–158. https://doi.org/10.1016/j.jns.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  16. Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S et al (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9(1):163–173. https://doi.org/10.1016/s1097-2765(01)00438-5

    Article  CAS  PubMed  Google Scholar 

  17. Nazıroglu M (2007) New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res 32(11):1990–2001. https://doi.org/10.1007/s11064-007-9386-x

    Article  CAS  PubMed  Google Scholar 

  18. Nazıroglu M (2012) Molecular role of catalase on oxidative stress-induced Ca(2+) signaling and TRP cation channel activation in nervous system. J Recept Signal Transduct Res 32(3):134–141. https://doi.org/10.3109/10799893.2012.672994

    Article  CAS  PubMed  Google Scholar 

  19. Bak DW, Weerapana E (2015) Cysteine-mediated redox signalling in the mitochondria. Mol BioSyst 11(3):678–697. https://doi.org/10.1039/c4mb00571f

    Article  CAS  PubMed  Google Scholar 

  20. Ovey IS, Naziroglu M (2015) Homocysteine and cytosolic GSH depletion induce apoptosis and oxidative toxicity through cytosolic calcium overload in the hippocampus of aged mice: involvement of TRPM2 and TRPV1 channels. Neuroscience 284:225–233. https://doi.org/10.1016/j.neuroscience.2014.09.078

    Article  CAS  PubMed  Google Scholar 

  21. Belrose JC, Xie YF, Gierszewski LJ, MacDonald JF, Jackson MF (2012) Loss of glutathione homeostasis associated with neuronal senescence facilitates TRPM2 channel activation in cultured hippocampal pyramidal neurons. Mol Brain 5:11. https://doi.org/10.1186/1756-6606-5-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ozgul C, Naziroglu M (2012) TRPM2 channel protective properties of N-acetylcysteine on cytosolic glutathione depletion dependent oxidative stress and Ca2+ influx in rat dorsal root ganglion. Physiol Behav 106(2):122–128. https://doi.org/10.1016/j.physbeh.2012.01.014

    Article  CAS  PubMed  Google Scholar 

  23. Nazıroğlu M, Ozgul C, Cig B, Dogan S, Uguz AC (2011) Glutathione modulates Ca(2+) influx and oxidative toxicity through TRPM2 channel in rat dorsal root ganglion neurons. J Membr Biol 242(3):109–118. https://doi.org/10.1007/s00232-011-9382-6

    Article  CAS  PubMed  Google Scholar 

  24. Lee M, Cho T, Jantaratnotai N, Wang YT, McGeer E, McGeer PL (2010) Depletion of GSH in glial cells induces neurotoxicity: relevance to aging and degenerative neurological diseases. FASEB J 24(7):2533–2545. https://doi.org/10.1096/fj.09-149997

    Article  CAS  PubMed  Google Scholar 

  25. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909

    Article  CAS  PubMed  Google Scholar 

  26. Yurekli VA, Gurler S, Nazıroğlu M, Uguz AC, Koyuncuoglu HR (2013) Zonisamide attenuates MPP+-induced oxidative toxicity through modulation of Ca2+ signaling and caspase-3 activity in neuronal PC12 cells. Cell Mol Neurobiol 33(2):205–212. https://doi.org/10.1007/s10571-012-9886-3

    Article  CAS  PubMed  Google Scholar 

  27. Peng Z, Luchtman DW, Wang X, Zhang Y, Song C (2019) Activation of microglia synergistically enhances neurodegeneration caused by MPP(+) in human SH-SY5Y cells. Eur J Pharmacol 850:64–74. https://doi.org/10.1016/j.ejphar.2019.01.024

    Article  CAS  PubMed  Google Scholar 

  28. Canals S, Casarejos MJ, de Bernardo S, Rodriguez-Martin E, Mena MA (2001) Glutathione depletion switches nitric oxide neurotrophic effects to cell death in midbrain cultures: implications for Parkinson’s disease. J Neurochem 79(6):1183–1195. https://doi.org/10.1046/j.1471-4159.2001.00635.x

    Article  CAS  PubMed  Google Scholar 

  29. Lee M, Kwon BM, Suk K, McGeer E, McGeer PL (2012) Effects of obovatol on GSH depleted glia-mediated neurotoxicity and oxidative damage. J NeuroImmune Pharmacol 7(1):173–186. https://doi.org/10.1007/s11481-011-9300-9

    Article  PubMed  Google Scholar 

  30. Akhtar F, Rouse CA, Catano G, Montalvo M, Ullevig SL, Asmis R, Kharbanda K, Maffi SK (2017) Acute maternal oxidant exposure causes susceptibility of the fetal brain to inflammation and oxidative stress. J Neuroinflammation 14(1):195. https://doi.org/10.1186/s12974-017-0965-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ni M, Aschner M (2010) Neonatal rat primary microglia: isolation, culturing, and selected applications. Curr Protoc Toxicol Chapter 12: Unit 12 17. https://doi.org/10.1002/0471140856.tx1217s43

  32. Mortadza SS, Sim JA, Stacey M, Jiang LH (2017) Signalling mechanisms mediating Zn(2+)-induced TRPM2 channel activation and cell death in microglial cells. Sci Rep 7:45032. https://doi.org/10.1038/srep45032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gordon R, Hogan CE, Neal ML, Anantharam V, Kanthasamy AG, Kanthasamy A (2011) A simple magnetic separation method for high-yield isolation of pure primary microglia. J Neurosci Methods 194(2):287–296. https://doi.org/10.1016/j.jneumeth.2010.11.001

    Article  PubMed  Google Scholar 

  34. Yao S, Li L, Sun X, Hua J, Zhang K, Hao L, Liu L, Shi D et al (2019) FTY720 inhibits MPP(+)-induced microglial activation by affecting NLRP3 inflammasome activation. J NeuroImmune Pharmacol 14(3):478–492. https://doi.org/10.1007/s11481-019-09843-4

    Article  PubMed  Google Scholar 

  35. Ozkaya D, Naziroglu M (2020) Curcumin diminishes cisplatin-induced apoptosis and mitochondrial oxidative stress through inhibition of TRPM2 channel signaling pathway in mouse optic nerve. J Recept Signal Transduct Res 40(2):97–108. https://doi.org/10.1080/10799893.2020.1720240

    Article  CAS  PubMed  Google Scholar 

  36. Guzman JN, Ilijic E, Yang B, Sanchez-Padilla J, Wokosin D, Galtieri D, Kondapalli J, Schumacker PT et al (2018) Systemic isradipine treatment diminishes calcium-dependent mitochondrial oxidant stress. J Clin Invest 128(6):2266–2280. https://doi.org/10.1172/JCI95898

    Article  PubMed  PubMed Central  Google Scholar 

  37. An X, Fu Z, Mai C, Wang W, Wei L, Li D, Li C, Jiang LH (2019) Increasing the TRPM2 channel expression in human neuroblastoma SH-SY5Y cells augments the susceptibility to ROS-induced cell death. Cells 8(1). https://doi.org/10.3390/cells8010028

  38. Ataizi ZS, Ertilav K, Naziroglu M (2019) Mitochondrial oxidative stress-induced brain and hippocampus apoptosis decrease through modulation of caspase activity, Ca(2+) influx and inflammatory cytokine molecular pathways in the docetaxel-treated mice by melatonin and selenium treatments. Metab Brain Dis 34(4):1077–1089. https://doi.org/10.1007/s11011-019-00428-x

    Article  CAS  PubMed  Google Scholar 

  39. Yazgan Y, Naziroglu M (2017) Ovariectomy-induced mitochondrial oxidative stress, apoptosis, and calcium ion influx through TRPA1, TRPM2, and TRPV1 are prevented by 17beta-estradiol, tamoxifen, and raloxifene in the hippocampus and dorsal root ganglion of rats. Mol Neurobiol 54(10):7620–7638. https://doi.org/10.1007/s12035-016-0232-5

    Article  CAS  PubMed  Google Scholar 

  40. Joshi DC, Bakowska JC (2011) Determination of mitochondrial membrane potential and reactive oxygen species in live rat cortical neurons. J Vis Exp 51. https://doi.org/10.3791/2704

  41. Keil VC, Funke F, Zeug A, Schild D, Muller M (2011) Ratiometric high-resolution imaging of JC-1 fluorescence reveals the subcellular heterogeneity of astrocytic mitochondria. Pflugers Arch 462(5):693–708. https://doi.org/10.1007/s00424-011-1012-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou ZD, Lim TM (2010) Glutathione conjugates with dopamine-derived quinones to form reactive or non-reactive glutathione-conjugates. Neurochem Res 35(11):1805–1818. https://doi.org/10.1007/s11064-010-0247-7

    Article  CAS  PubMed  Google Scholar 

  43. Li X, Jiang LH (2018) Multiple molecular mechanisms form a positive feedback loop driving amyloid beta42 peptide-induced neurotoxicity via activation of the TRPM2 channel in hippocampal neurons. Cell Death Dis 9(2):195. https://doi.org/10.1038/s41419-018-0270-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hanamsagar R, Bilbo SD (2017) Environment matters: microglia function and dysfunction in a changing world. Curr Opin Neurobiol 47:146–155. https://doi.org/10.1016/j.conb.2017.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fonfria E, Marshall IC, Benham CD, Boyfield I, Brown JD, Hill K, Hughes JP, Skaper SD et al (2004) TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br J Pharmacol 143(1):186–192. https://doi.org/10.1038/sj.bjp.0705914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhu T, Zhao Y, Hu H, Zheng Q, Luo X, Ling Y, Ying Y, Shen Z et al (2019) TRPM2 channel regulates cytokines production in astrocytes and aggravates brain disorder during lipopolysaccharide-induced endotoxin sepsis. Int Immunopharmacol 75:105836. https://doi.org/10.1016/j.intimp.2019.105836

    Article  CAS  PubMed  Google Scholar 

  47. Aminzadeh M, Roghani M, Sarfallah A, Riazi GH (2018) TRPM2 dependence of ROS-induced NLRP3 activation in Alzheimer’s disease. Int Immunopharmacol 54:78–85. https://doi.org/10.1016/j.intimp.2017.10.024

    Article  CAS  PubMed  Google Scholar 

  48. Moreno-Garcia ME, Sumoza-Toledo A, Lund FE, Santos-Argumedo L (2005) Localization of CD38 in murine B lymphocytes to plasma but not intracellular membranes. Mol Immunol 42(6):703–711. https://doi.org/10.1016/j.molimm.2004.09.019

    Article  CAS  PubMed  Google Scholar 

  49. Kraft R, Grimm C, Grosse K, Hoffmann A, Sauerbruch S, Kettenmann H, Schultz G, Harteneck C (2004) Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am J Physiol Cell Physiol 286(1):C129–C137. https://doi.org/10.1152/ajpcell.00331.2003

    Article  CAS  PubMed  Google Scholar 

  50. Kraft R, Grimm C, Frenzel H, Harteneck C (2006) Inhibition of TRPM2 cation channels by N-(p-amylcinnamoyl)anthranilic acid. Br J Pharmacol 148(3):264–273. https://doi.org/10.1038/sj.bjp.0706739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McNaught KS, Jenner P (2000) Extracellular accumulation of nitric oxide, hydrogen peroxide, and glutamate in astrocytic cultures following glutathione depletion, complex I inhibition, and/or lipopolysaccharide-induced activation. Biochem Pharmacol 60(7):979–988. https://doi.org/10.1016/s0006-2952(00)00415-9

    Article  CAS  PubMed  Google Scholar 

  52. Thomas B, Banerjee R, Starkova NN, Zhang SF, Calingasan NY, Yang L, Wille E, Lorenzo BJ et al (2012) Mitochondrial permeability transition pore component cyclophilin D distinguishes nigrostriatal dopaminergic death paradigms in the MPTP mouse model of Parkinson’s disease. Antioxid Redox Signal 16(9):855–868. https://doi.org/10.1089/ars.2010.3849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Diaz-Hung ML, Yglesias-Rivera A, Hernandez-Zimbron LF, Orozco-Suarez S, Ruiz-Fuentes JL, Diaz-Garcia A, Leon-Martinez R, Blanco-Lezcano L et al (2016) Transient glutathione depletion in the substantia nigra compacta is associated with neuroinflammation in rats. Neuroscience 335:207–220. https://doi.org/10.1016/j.neuroscience.2016.08.023

    Article  CAS  PubMed  Google Scholar 

  54. Franco R, Cidlowski JA (2009) Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ 16(10):1303–1314. https://doi.org/10.1038/cdd.2009.107

    Article  CAS  PubMed  Google Scholar 

  55. Roychowdhury S, Wolf G, Keilhoff G, Horn TF (2003) Cytosolic and mitochondrial glutathione in microglial cells are differentially affected by oxidative/nitrosative stress. Nitric Oxide 8(1):39–47. https://doi.org/10.1016/s1089-8603(02)00146-5

    Article  CAS  PubMed  Google Scholar 

  56. Sun Y, Sukumaran P, Selvaraj S, Cilz NI, Schaar A, Lei S, Singh BB (2018) TRPM2 promotes neurotoxin MPP(+)/MPTP-induced cell death. Mol Neurobiol 55(1):409–420. https://doi.org/10.1007/s12035-016-0338-9

    Article  CAS  PubMed  Google Scholar 

  57. Togashi K, Inada H, Tominaga M (2008) Inhibition of the transient receptor potential cation channel TRPM2 by 2-aminoethoxydiphenyl borate (2-APB). Br J Pharmacol 153(6):1324–1330. https://doi.org/10.1038/sj.bjp.0707675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gershkovitz M, Caspi Y, Fainsod-Levi T, Katz B, Michaeli J, Khawaled S, Lev S, Polyansky L et al (2018) TRPM2 mediates neutrophil killing of disseminated tumor cells. Cancer Res 78(10):2680–2690. https://doi.org/10.1158/0008-5472.CAN-17-3614

    Article  CAS  PubMed  Google Scholar 

  59. Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62(6):649–671. https://doi.org/10.1016/s0301-0082(99)00060-x

    Article  CAS  PubMed  Google Scholar 

  60. Chatterjee S, Noack H, Possel H, Keilhoff G, Wolf G (1999) Glutathione levels in primary glial cultures: monochlorobimane provides evidence of cell type-specific distribution. Glia 27(2):152–161

    Article  CAS  PubMed  Google Scholar 

  61. Kumari A, Singh KP, Mandal A, Paswan RK, Sinha P, Das P, Ali V, Bimal S et al (2017) Intracellular zinc flux causes reactive oxygen species mediated mitochondrial dysfunction leading to cell death in Leishmania donovani. PLoS One 12(6):e0178800. https://doi.org/10.1371/journal.pone.0178800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zysk M, Gapys B, Ronowska A, Gul-Hinc S, Erlandsson A, Iwanicki A, Sakowicz-Burkiewicz M, Szutowicz A et al (2018) Protective effects of voltage-gated calcium channel antagonists against zinc toxicity in SN56 neuroblastoma cholinergic cells. PLoS One 13(12):e0209363. https://doi.org/10.1371/journal.pone.0209363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Maret W (2019) The redox biology of redox-inert zinc ions. Free Radic Biol Med 134:311–326. https://doi.org/10.1016/j.freeradbiomed.2019.01.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The patch-clamp and LSC microscope analyses of the current study were from BSN Health, Analyses, Innovation, Consultancy, Organization, Agriculture and Industry Ltd., (Göller Bölgesi Teknokenti, Isparta, Turkey) by MN. Results of the current study were summarized from a PhD thesis of Kenan Yıldızhan.

Funding

The study was supported by Scientific Project Unit (BAP) of SDU, Isparta, Turkey (Project No: TDK-2019-7321. The coordinator of the project was Prof. Dr. Mustafa Nazıroğlu). There is no financial disclosure of the current study.

Author information

Authors and Affiliations

Authors

Contributions

MN and KE formulated the hypothesis and MN were responsible for writing the report. KY was responsible for isolating the microglia and analyzing the intracellular Ca2+ concentration. MN was responsible for the LSC microscope analyses. KE was also responsible from plate reader analyses.

Corresponding author

Correspondence to Mustafa Nazıroğlu.

Ethics declarations

This article does not contain any studies with human participants performed by any of the authors. This study was approved by the Local Ethical Committee of Burdur Mehmet Akif University (BMAU), Burdur, Turkey (date: 15.05.2019, permit number: 2019-521). The mice were cared in accordance with the guidelines of the Animal Care Committee of BMAU.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yıldızhan, K., Nazıroğlu, M. Glutathione Depletion and Parkinsonian Neurotoxin MPP+-Induced TRPM2 Channel Activation Play Central Roles in Oxidative Cytotoxicity and Inflammation in Microglia. Mol Neurobiol 57, 3508–3525 (2020). https://doi.org/10.1007/s12035-020-01974-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01974-7

Keywords

Navigation