Skip to main content

Advertisement

Log in

Long-Lasting Cerebral Vasospasm, Microthrombosis, Apoptosis and Paravascular Alterations Associated with Neurological Deficits in a Mouse Model of Subarachnoid Hemorrhage

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Subarachnoid hemorrhage (SAH) is a devastating disease with high mortality and morbidity. Long-term cognitive and sensorimotor deficits are serious complications following SAH but still not well explained and described in mouse preclinical models. The aim of our study is to characterize a well-mastered SAH murine model and to establish developing pathological mechanisms leading to cognitive and motor deficits, allowing identification of specific targets involved in these long-term troubles. We hereby demonstrate that the double blood injection model of SAH induced long-lasting large cerebral artery vasospasm (CVS), microthrombosis formation and cerebral brain damage including defect in potential paravascular diffusion. These neurobiological alterations appear to be associated with sensorimotor and cognitive dysfunctions mainly detected 10 days after the bleeding episode. In conclusion, this characterized model of SAH in mice, stressing prolonged neurobiological pathological mechanisms and associated sensitivomotor deficits, will constitute a validated preclinical model to better decipher the link between CVS, long-term cerebral apoptosis and cognitive disorders occurring during SAH and to allow investigating novel therapeutic approaches in transgenic mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Feigin VL, Forouzanfar MH, Krishnamurthi R et al (2014) Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet 383:245–254

    Article  PubMed  PubMed Central  Google Scholar 

  2. Johnston SC, Selvin S, Gress DR (1998) The burden, trends, and demographics of mortality from subarachnoid hemorrhage. Neurology 50:1413–1418

    Article  CAS  PubMed  Google Scholar 

  3. Chalouhi N, Hoh BL, Hasan D (2013) Review of cerebral aneurysm formation, growth, and rupture. Stroke 44:3613–3622. doi:10.1161/STROKEAHA.113.002390

    Article  PubMed  Google Scholar 

  4. Solenski NJ, Haley EC, Kassell NF et al (1995) Medical complications of aneurysmal subarachnoid hemorrhage: a report of the multicenter, cooperative aneurysm study. Participants of the multicenter cooperative aneurysm study. Crit Care Med 23:1007–1017

    Article  CAS  PubMed  Google Scholar 

  5. Cahill J, Cahill WJ, Calvert JW et al (2006) Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 26:1341–1353. doi:10.1038/sj.jcbfm.9600283

    Article  CAS  PubMed  Google Scholar 

  6. Huang J, van Gelder JM (2002) The probability of sudden death from rupture of intracranial aneurysms: a meta-analysis. Neurosurgery 51:1101–1105 discussion 1105–1107

    Article  PubMed  Google Scholar 

  7. Rothberg C, Weir B, Overton T, Grace M (1980) Responses to experimental subarachnoid hemorrhage in the spontaneously breathing primate. J Neurosurg 52:302–308. doi:10.3171/jns.1980.52.3.0302

    Article  CAS  PubMed  Google Scholar 

  8. Bederson JB, Germano IM, Guarino L (1995) Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke 26:1086–1091 discussion 1091–1092

    Article  CAS  PubMed  Google Scholar 

  9. Rasmussen G, Hauerberg J, Waldemar G et al (1992) Cerebral blood flow autoregulation in experimental subarachnoid haemorrhage in rat. Acta Neurochir 119:128–133

    Article  CAS  PubMed  Google Scholar 

  10. Rabinstein AA, Weigand S, Atkinson JLD, Wijdicks EFM (2005) Patterns of cerebral infarction in aneurysmal subarachnoid hemorrhage. Stroke 36:992–997. doi:10.1161/01.STR.0000163090.59350.5a

    Article  PubMed  Google Scholar 

  11. Kivisaari RP, Salonen O, Servo A et al (2001) MR imaging after aneurysmal subarachnoid hemorrhage and surgery: a long-term follow-up study. AJNR Am J Neuroradiol 22:1143–1148

    CAS  PubMed  Google Scholar 

  12. Rincon F, Rossenwasser RH, Dumont A (2013) The epidemiology of admissions of nontraumatic subarachnoid hemorrhage in the United States. Neurosurgery 73:217–222. doi:10.1227/01.neu.0000430290.93304.33 discussion 212–213

    Article  PubMed  Google Scholar 

  13. Ogden JA, Mee EW, Henning M (1993) A prospective study of impairment of cognition and memory and recovery after subarachnoid hemorrhage. Neurosurgery 33:572–586 discussion 586–587

    Article  CAS  PubMed  Google Scholar 

  14. Hackett ML, Anderson CS (2000) Health outcomes 1 year after subarachnoid hemorrhage: An international population-based study. The Australian Cooperative Research on Subarachnoid Hemorrhage Study Group. Neurology 55:658–662

    Article  CAS  PubMed  Google Scholar 

  15. Mayer SA, Kreiter KT, Copeland D et al (2002) Global and domain-specific cognitive impairment and outcome after subarachnoid hemorrhage. Neurology 59:1750–1758

    Article  CAS  PubMed  Google Scholar 

  16. Mayberg MR, Batjer HH, Dacey R et al (1994) Guidelines for the management of aneurysmal subarachnoid hemorrhage. A statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke 25:2315–2328

    Article  CAS  PubMed  Google Scholar 

  17. Rabinstein AA, Friedman JA, Nichols DA et al (2004) Predictors of outcome after endovascular treatment of cerebral vasospasm. AJNR Am J Neuroradiol 25:1778–1782

    PubMed  Google Scholar 

  18. Sehba FA, Hou J, Pluta RM, Zhang JH (2012) The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol 97:14–37. doi:10.1016/j.pneurobio.2012.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  19. Borel CO, McKee A, Parra A et al (2003) Possible role for vascular cell proliferation in cerebral vasospasm after subarachnoid hemorrhage. Stroke 34:427–433

    Article  CAS  PubMed  Google Scholar 

  20. Young AMH, Karri SK, Helmy A et al (2015) Pharmacologic management of subarachnoid hemorrhage. World Neurosurg 84:28–35. doi:10.1016/j.wneu.2015.02.004

    Article  PubMed  Google Scholar 

  21. Carr KR, Zuckerman SL, Mocco J (2013) Inflammation, cerebral vasospasm, and evolving theories of delayed cerebral ischemia. Neurol Res Int 2013:506584. doi:10.1155/2013/506584

    PubMed  PubMed Central  Google Scholar 

  22. Miller BA, Turan N, Chau M, Pradilla G (2014) Inflammation, vasospasm, and brain injury after subarachnoid hemorrhage. Biomed Res Int 2014:384342. doi:10.1155/2014/384342

    PubMed  PubMed Central  Google Scholar 

  23. Sehba FA, Mostafa G, Friedrich V, Bederson JB (2005) Acute microvascular platelet aggregation after subarachnoid hemorrhage. J Neurosurg 102:1094–1100. doi:10.3171/jns.2005.102.6.1094

    Article  PubMed  Google Scholar 

  24. Sehba FA, Bederson JB (2006) Mechanisms of acute brain injury after subarachnoid hemorrhage. Neurol Res 28:381–398. doi:10.1179/016164106X114991

    Article  CAS  PubMed  Google Scholar 

  25. Kolias AG, Sen J, Belli A (2009) Pathogenesis of cerebral vasospasm following aneurysmal subarachnoid hemorrhage: putative mechanisms and novel approaches. J Neurosci Res 87:1–11. doi:10.1002/jnr.21823

    Article  CAS  PubMed  Google Scholar 

  26. Rowland MJ, Hadjipavlou G, Kelly M et al (2012) Delayed cerebral ischaemia after subarachnoid haemorrhage: looking beyond vasospasm. Br J Anaesth 109:315–329. doi:10.1093/bja/aes264

    Article  CAS  PubMed  Google Scholar 

  27. Dankbaar JW, Rijsdijk M, van der Schaaf IC et al (2009) Relationship between vasospasm, cerebral perfusion, and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Neuroradiology 51:813–819. doi:10.1007/s00234-009-0575-y

    Article  PubMed  PubMed Central  Google Scholar 

  28. Macdonald RL (2014) Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol 10:44–58. doi:10.1038/nrneurol.2013.246

    Article  CAS  PubMed  Google Scholar 

  29. Parra A, McGirt MJ, Sheng H et al (2002) Mouse model of subarachnoid hemorrhage associated cerebral vasospasm: methodological analysis. Neurol Res 24:510–516. doi:10.1179/016164102101200276

    Article  PubMed  Google Scholar 

  30. Turan N, Miller BA, Heider RA et al (2016) Neurobehavioral testing in subarachnoid hemorrhage: a review of methods and current findings in rodents. J Cereb Blood Flow Metab. doi:10.1177/0271678X16665623

    PubMed  Google Scholar 

  31. Lin C-L, Calisaneller T, Ukita N et al (2003) A murine model of subarachnoid hemorrhage-induced cerebral vasospasm. J Neurosci Methods 123:89–97

    Article  PubMed  Google Scholar 

  32. Sabri M, Jeon H, Ai J et al (2009) Anterior circulation mouse model of subarachnoid hemorrhage. Brain Res 1295:179–185. doi:10.1016/j.brainres.2009.08.021

    Article  CAS  PubMed  Google Scholar 

  33. Raslan F, Albert-Weißenberger C, Westermaier T et al (2012) A modified double injection model of cisterna magna for the study of delayed cerebral vasospasm following subarachnoid hemorrhage in rats. Exp Transl Stroke Med 4:23. doi:10.1186/2040-7378-4-23

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dubois M, Lapinte N, Villier V et al (2014) Chemotherapy-induced long-term alteration of executive functions and hippocampal cell proliferation: role of glucose as adjuvant. Neuropharmacology 79:234–248. doi:10.1016/j.neuropharm.2013.11.012

    Article  CAS  PubMed  Google Scholar 

  35. Skripuletz T, Miller E, Moharregh-Khiabani D et al (2010) Beneficial effects of minocycline on cuprizone induced cortical demyelination. Neurochem Res 35:1422–1433. doi:10.1007/s11064-010-0202-7

    Article  CAS  PubMed  Google Scholar 

  36. Paxinos G, Franklin KBJ (1997) The mouse brain in stereotaxic coordinates / George Paxinos, Keith B.J. Franklin. Academic, San Diego, Calif. ; London :

  37. Muroi C, Fujioka M, Mishima K et al (2014) Effect of ADAMTS-13 on cerebrovascular microthrombosis and neuronal injury after experimental subarachnoid hemorrhage. J Thromb Haemost 12:505–514. doi:10.1111/jth.12511

    Article  CAS  PubMed  Google Scholar 

  38. Oshio K, Watanabe H, Song Y et al (2005) Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel aquaporin-1. FASEB J 19:76–78. doi:10.1096/fj.04-1711fje

    Article  CAS  PubMed  Google Scholar 

  39. Yang L, Kress BT, Weber HJ et al (2013) Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer. J Transl Med 11:107. doi:10.1186/1479-5876-11-107

    Article  PubMed  PubMed Central  Google Scholar 

  40. Al-Khindi T, Macdonald RL, Schweizer TA (2010) Cognitive and functional outcome after aneurysmal subarachnoid hemorrhage. Stroke 41:e519–e536. doi:10.1161/STROKEAHA.110.581975

    Article  PubMed  Google Scholar 

  41. Vergouwen MDI, Knaup VL, Roelofs JJTH et al (2014) Effect of recombinant ADAMTS-13 on microthrombosis and brain injury after experimental subarachnoid hemorrhage. J Thromb Haemost 12:943–947. doi:10.1111/jth.12574

    Article  CAS  PubMed  Google Scholar 

  42. Sabri M, Ai J, Lakovic K et al (2012) Mechanisms of microthrombi formation after experimental subarachnoid hemorrhage. Neuroscience 224:26–37. doi:10.1016/j.neuroscience.2012.08.002

    Article  CAS  PubMed  Google Scholar 

  43. Friedrich B, Müller F, Feiler S et al (2012) Experimental subarachnoid hemorrhage causes early and long-lasting microarterial constriction and microthrombosis: an in-vivo microscopy study. J Cereb Blood Flow Metab 32:447–455. doi:10.1038/jcbfm.2011.154

    Article  CAS  PubMed  Google Scholar 

  44. Iliff JJ, Wang M, Liao Y et al (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4:147ra111. doi:10.1126/scitranslmed.3003748

    Article  PubMed  PubMed Central  Google Scholar 

  45. Iliff JJ, Lee H, Yu M et al (2013) Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest 123:1299–1309. doi:10.1172/JCI67677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gaberel T, Gakuba C, Goulay R et al (2014) Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? Stroke 45:3092–3096. doi:10.1161/STROKEAHA.114.006617

    Article  CAS  PubMed  Google Scholar 

  47. Gules I, Satoh M, Clower BR et al (2002) Comparison of three rat models of cerebral vasospasm. Am J Physiol Heart Circ Physiol 283:H2551–H2559. doi:10.1152/ajpheart.00616.2002

    Article  CAS  PubMed  Google Scholar 

  48. Zhou M-L, Shi J-X, Zhu J-Q et al (2007) Comparison between one- and two-hemorrhage models of cerebral vasospasm in rabbits. J Neurosci Methods 159:318–324. doi:10.1016/j.jneumeth.2006.07.026

    Article  PubMed  Google Scholar 

  49. Kamii H, Kato I, Kinouchi H et al (1999) Amelioration of vasospasm after subarachnoid hemorrhage in transgenic mice overexpressing CuZn-superoxide dismutase. Stroke 30:867–871 discussion 872

    Article  CAS  PubMed  Google Scholar 

  50. Saito I, Ueda Y, Sano K (1977) Significance of vasospasm in the treatment of ruptured intracranial aneurysms. J Neurosurg 47:412–429. doi:10.3171/jns.1977.47.3.0412

    Article  CAS  PubMed  Google Scholar 

  51. Weir B, Grace M, Hansen J, Rothberg C (1978) Time course of vasospasm in man. J Neurosurg 48:173–178. doi:10.3171/jns.1978.48.2.0173

    Article  CAS  PubMed  Google Scholar 

  52. Bühler D, Schüller K, Plesnila N (2014) Protocol for the induction of subarachnoid hemorrhage in mice by perforation of the circle of Willis with an endovascular filament. Transl Stroke Res 5:653–659. doi:10.1007/s12975-014-0366-6

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ciurea A, Palade C, Voinescu D, Nica D (2013) Subarachnoid hemorrhage and cerebral vasospasm—literature review. J Med Life 6:120–125

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhou C, Yamaguchi M, Kusaka G et al (2004) Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 24:419–431. doi:10.1097/00004647-200404000-00007

    Article  CAS  PubMed  Google Scholar 

  55. Kimura H, Gules I, Meguro T, Zhang JH (2003) Cytotoxicity of cytokines in cerebral microvascular endothelial cell. Brain Res 990:148–156

    Article  CAS  PubMed  Google Scholar 

  56. Zhang Q, Chang Q, Cox RA et al (2008) Hyperbaric oxygen attenuates apoptosis and decreases inflammation in an ischemic wound model. J Invest Dermatol 128:2102–2112. doi:10.1038/jid.2008.53

    Article  CAS  PubMed  Google Scholar 

  57. Kreiter KT, Copeland D, Bernardini GL et al (2002) Predictors of cognitive dysfunction after subarachnoid hemorrhage. Stroke 33:200–208

    Article  PubMed  Google Scholar 

  58. Germanò AF, Dixon CE, d’Avella D et al (1994) Behavioral deficits following experimental subarachnoid hemorrhage in the rat. J Neurotrauma 11:345–353

    Article  PubMed  Google Scholar 

  59. Germanò A, Caffo M, Angileri FF et al (2007) NMDA receptor antagonist felbamate reduces behavioral deficits and blood-brain barrier permeability changes after experimental subarachnoid hemorrhage in the rat. J Neurotrauma 24:732–744. doi:10.1089/neu.2006.0181

    Article  PubMed  Google Scholar 

  60. Yatsushige H, Ostrowski RP, Tsubokawa T et al (2007) Role of c-Jun N-terminal kinase in early brain injury after subarachnoid hemorrhage. J Neurosci Res 85:1436–1448. doi:10.1002/jnr.21281

    Article  CAS  PubMed  Google Scholar 

  61. Silasi G, Colbourne F (2009) Long-term assessment of motor and cognitive behaviours in the intraluminal perforation model of subarachnoid hemorrhage in rats. Behav Brain Res 198:380–387. doi:10.1016/j.bbr.2008.11.019

    Article  PubMed  Google Scholar 

  62. Milner E, Holtzman JC, Friess S et al (2014) Endovascular perforation subarachnoid hemorrhage fails to cause Morris water maze deficits in the mouse. J Cereb Blood Flow Metab. doi:10.1038/jcbfm.2014.108

    PubMed  PubMed Central  Google Scholar 

  63. Takata K, Sheng H, Borel CO et al (2008) Long-term cognitive dysfunction following experimental subarachnoid hemorrhage: new perspectives. Exp Neurol 213:336–344. doi:10.1016/j.expneurol.2008.06.009

    Article  CAS  PubMed  Google Scholar 

  64. Davis AR, Shear DA, Chen Z et al (2010) A comparison of two cognitive test paradigms in a penetrating brain injury model. J Neurosci Methods 189:84–87. doi:10.1016/j.jneumeth.2010.03.012

    Article  PubMed  Google Scholar 

  65. Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13:93–110. doi:10.1007/s10339-011-0430-z

    Article  CAS  PubMed  Google Scholar 

  66. Sasaki T, Hoffmann U, Kobayashi M et al (2016) Long-term cognitive deficits after subarachnoid hemorrhage in rats. Neurocrit Care 25:293–305. doi:10.1007/s12028-016-0250-1

    Article  PubMed  Google Scholar 

  67. Etminan N, Vergouwen MDI, Ilodigwe D, Macdonald RL (2011) Effect of pharmaceutical treatment on vasospasm, delayed cerebral ischemia, and clinical outcome in patients with aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. J Cereb Blood Flow Metab 31:1443–1451. doi:10.1038/jcbfm.2011.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hasegawa Y, Suzuki H, Sozen T et al (2011) Apoptotic mechanisms for neuronal cells in early brain injury after subarachnoid hemorrhage. Acta Neurochir Suppl 110:43–48. doi:10.1007/978-3-7091-0353-1_8

    PubMed  Google Scholar 

  69. Stein SC, Browne KD, Chen X-H et al (2006) Thromboembolism and delayed cerebral ischemia after subarachnoid hemorrhage: an autopsy study. Neurosurgery 59:781–787. doi:10.1227/01.NEU.0000227519.27569.45 discussion 787–788

    Article  PubMed  Google Scholar 

  70. Roos YB, de Haan RJ, Beenen LF et al (2000) Complications and outcome in patients with aneurysmal subarachnoid haemorrhage: a prospective hospital based cohort study in the Netherlands. J Neurol Neurosurg Psychiatry 68:337–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Neil-Dwyer G, Lang DA, Doshi B et al (1994) Delayed cerebral ischaemia: the pathological substrate. Acta Neurochir 131:137–145

    Article  CAS  PubMed  Google Scholar 

  72. Sabri M, Ai J, Knight B et al (2011) Uncoupling of endothelial nitric oxide synthase after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 31:190–199. doi:10.1038/jcbfm.2010.76

    Article  CAS  PubMed  Google Scholar 

  73. Luo C, Yao X, Li J et al (2016) Paravascular pathways contribute to vasculitis and neuroinflammation after subarachnoid hemorrhage independently of glymphatic control. Cell Death Dis 7:e2160. doi:10.1038/cddis.2016.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cossu G, Messerer M, Oddo M, Daniel RT (2014) To look beyond vasospasm in aneurysmal subarachnoid haemorrhage. Biomed Res Int. doi:10.1155/2014/628597

    Google Scholar 

  75. Archavlis E, Nievas MCY (2013) Cerebral vasospasm: a review of current developments in drug therapy and research. J Pharm Technol Drug Res 2:18. doi:10.7243/2050-120X-2-18

    Article  Google Scholar 

  76. King MD, Laird MD, Sangeetha SR et al (2010) Elucidating novel mechanisms of brain injury following subarachnoid hemorrhage: an emerging role for neuroproteomics. Neurosurg Focus 28:E10. doi:10.3171/2009.10.FOCUS09223

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the PRIMACEN platform (Normandie Rouen University, France) for imaging equipment and Mr. Arnaud Arabo and Mrs. Huguette Lemonnier for animal housing. This work was supported by Seinari Normandy maturation program, Normandie Rouen University, Inserm, and Rouen University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Castel.

Ethics declarations

Conflict of Interest

The authors have disclosed that they hold no financial interest related to the conduct or results of this research.

Electronic supplementary material

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Amki, M., Dubois, M., Lefevre-Scelles, A. et al. Long-Lasting Cerebral Vasospasm, Microthrombosis, Apoptosis and Paravascular Alterations Associated with Neurological Deficits in a Mouse Model of Subarachnoid Hemorrhage. Mol Neurobiol 55, 2763–2779 (2018). https://doi.org/10.1007/s12035-017-0514-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0514-6

Keywords

Navigation