Skip to main content

Advertisement

Log in

Neuroprotective Effects of Antidepressants via Upregulation of Neurotrophic Factors in the MPTP Model of Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neurotrophic factors are essential for neuronal survival, plasticity, and development and have been implicated in the action mechanism of antidepressants. In this study, we assessed the neurotrophic factor-inducing and neuroprotective properties of antidepressants. In the first part of the study, we found that fluoxetine, imipramine, and milnacipran (i.p., 20 mg/kg/day for 1 week or 3 weeks) upregulated brain-derived neurotrophic factor in the striatum and substantia nigra both at 1 week and 3 weeks. In contrast, an increase in the glial-derived neurotrophic factor was more obvious at 3 weeks after the antidepressants treatment. Specifically, it was found that fluoxetine and imipramine are more potent in raising the levels of neurotrophic factors than milnacipran. Furthermore, antidepressants elevated the phosphorylation of extracellular signal-regulated-protein kinase (ERK1/2) and the serine/threonine kinase Akt. In the second part of the study, we compared the neuroprotective effects of fluoxetine, imipramine, and milnacipran in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson’s disease. Pretreament with fluoxetine, imipramine or milnacipran for 3 weeks reduced MPTP-induced dopaminergic neurodegeneration and microglial activation in the nigrostriatal pathway. Neurochemical analysis by HPLC exhibited that antidepressants attenuated the depletion of striatal dopamine. In consistent, beam test showed that behavioral impairment was ameliorated by antidepressants. Neuroprotective effects were more prominent in the fluoxetine or imipramine treatment group than in milnacipran treatment group. Finally, we found that neuroprotection of the antidepressants against 1-methyl-4-phenylpyridinium neurotoxicity in SH-SY5Y cells was attenuated by ERK or Akt inhibitor. These results indicate that neuroprotection by antidepressants might be associated with the induction of neurotrophic factors, and antidepressant could be a potential therapeutic intervention for treatment of Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Epstein FH, Martin JB (1999) Molecular basis of the neurodegenerative disorders. N Engl J Med 340(25):1970–1980

    Article  Google Scholar 

  2. Lotharius J, Brundin P (2002) Pathogenesis of Parkinson’s disease: dopamine, vesicles and α-synuclein. Nat Rev Neurosci 3(12):932–942

    Article  CAS  PubMed  Google Scholar 

  3. Gispert S, Kurz A, Brehm N, Rau K, Walter M, Riess O, Auburger G (2014) Complexin-1 and Foxp1 expression changes are novel brain effects of alpha-synuclein pathology. Mol Neurobiol:1–7

  4. Bergman H, Deuschl G (2002) Pathophysiology of Parkinson’s disease: from clinical neurology to basic neuroscience and back. Mov Disord 17(S3):S28–S40

    Article  PubMed  Google Scholar 

  5. Schapira AH, Bezard E, Brotchie J, Calon F, Collingridge GL, Ferger B, Hengerer B, Hirsch E et al (2006) Novel pharmacological targets for the treatment of Parkinson’s disease. Nat Rev Drug Discov 5(10):845–854

    Article  CAS  PubMed  Google Scholar 

  6. Tintner R, Jankovic J (2002) Treatment options for Parkinson’s disease. Curr Opin Neurol 15(4):467–476

    Article  PubMed  Google Scholar 

  7. Jankovic J, Poewe W (2012) Therapies in Parkinson’s disease. Curr Opin Neurol 25(4):433–447

    Article  CAS  PubMed  Google Scholar 

  8. Henchcliffe C, Severt WL (2011) Disease modification in Parkinson’s disease. Drugs Aging 28(8):605–615

    Article  CAS  PubMed  Google Scholar 

  9. Schapira A (2005) Present and future drug treatment for Parkinson’s disease. J Neurol Neurosurg Psychiatry 76(11):1472–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Semkova I, Krieglstein J (1999) Neuroprotection mediated via neurotrophic factors and induction of neurotrophic factors. Brain Res Rev 30(2):176–188

    Article  CAS  PubMed  Google Scholar 

  11. Ebendal T (1992) Function and evolution in the NGF family and its receptors. J Neurosci Res 32(4):461–470

    Article  CAS  PubMed  Google Scholar 

  12. Ang E, Wong P, Moochhala S, Ng Y (2003) Neuroprotection associated with running: is it a result of increased endogenous neurotrophic factors? Neuroscience 118(2):335–345

    Article  CAS  PubMed  Google Scholar 

  13. Nagahara AH, Merrill DA, Coppola G, Tsukada S, Schroeder BE, Shaked GM, Wang L, Blesch A et al (2009) Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat Med 15(3):331–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kirik D, Georgievska B, Björklund A (2004) Localized striatal delivery of GDNF as a treatment for Parkinson disease. Nat Neurosci 7(2):105–110

    Article  CAS  PubMed  Google Scholar 

  15. Hong M, Mukhida K, Mendez I (2008) GDNF therapy for Parkinson’s disease

  16. Wu S, Li G, Li X, Lin C, Yu D, Luan S, Ma C (2014) Transport of glial cell line-derived neurotrophic factor into liposomes across the blood-brain barrier: in vitro and in vivo studies. Int J Mol Sci 15(3):3612–3623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen Y-H, Harvey BK, Hoffman AF, Wang Y, Chiang Y-H, Lupica CR (2008) MPTP-induced deficits in striatal synaptic plasticity are prevented by glial cell line-derived neurotrophic factor expressed via an adeno-associated viral vector. FASEB J 22(1):261–275

    Article  CAS  PubMed  Google Scholar 

  18. Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, Bunnage M, Brooks DJ, Svendsen CN et al (2003) Direct brain infusion of glial cell line–derived neurotrophic factor in Parkinson disease. Nat Med 9(5):589–595

    Article  CAS  PubMed  Google Scholar 

  19. Winkler C, Sauer H, Lee CS, Björklund A (1996) Short-term GDNF treatment provides long-term rescue of lesioned nigral dopaminergic neurons in a rat model of Parkinson’s disease. J Neurosci 16(22):7206–7215

    CAS  PubMed  Google Scholar 

  20. Lindner MD, Winn SR, Baetge E, Hammang JP, Gentile FT, Doherty E, McDermott PE, Frydel B et al (1995) Implantation of encapsulated catecholamine and GDNF-producing cells in rats with unilateral dopamine depletions and parkinsonian symptoms. Exp Neurol 132(1):62–76

    Article  CAS  PubMed  Google Scholar 

  21. Garbayo E, Montero-Menei C, Ansorena E, Lanciego JL, Aymerich MS, Blanco-Prieto MJ (2009) Effective GDNF brain delivery using microspheres—a promising strategy for Parkinson’s disease. J Control Release 135(2):119–126

    Article  CAS  PubMed  Google Scholar 

  22. Sinclair SR, Svendsen CN, Torres EM, Martin D, Fawcett JW, Dunnett SB (1996) GDNF enhances dopaminergic cell survival and fibre outgrowth in embryonic nigral grafts. Neuroreport 7(15–17):2547–2552

    Article  CAS  PubMed  Google Scholar 

  23. Hisaoka K, Nishida A, Koda T, Miyata M, Zensho H, Morinobu S, Ohta M, Yamawaki S (2001) Antidepressant drug treatments induce glial cell line-derived neurotrophic factor (GDNF) synthesis and release in rat C6 glioblastoma cells. J Neurochem 79(1):25–34

    Article  CAS  PubMed  Google Scholar 

  24. Ubhi K, Inglis C, Mante M, Patrick C, Adame A, Spencer B, Rockenstein E, May V et al (2012) Fluoxetine ameliorates behavioral and neuropathological deficits in a transgenic model mouse of α-synucleinopathy. Exp Neurol 234(2):405–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chung YC, Kim SR, Park J-Y, Chung ES, Park KW, Won SY, Bok E, Jin M et al (2011) Fluoxetine prevents MPTP-induced loss of dopaminergic neurons by inhibiting microglial activation. Neuropharmacology 60(6):963–974

    Article  CAS  PubMed  Google Scholar 

  26. Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15(11):7539–7547

    CAS  PubMed  Google Scholar 

  27. Allaman I, Fiumelli H, Magistretti PJ, Martin J-L (2011) Fluoxetine regulates the expression of neurotrophic/growth factors and glucose metabolism in astrocytes. Psychopharmacology 216(1):75–84

    Article  CAS  PubMed  Google Scholar 

  28. Clark S, Schwalbe J, Stasko MR, Yarowsky PJ, Costa AC (2006) Fluoxetine rescues deficient neurogenesis in hippocampus of the Ts65Dn mouse model for Down syndrome. Exp Neurol 200(1):256–261

    Article  CAS  PubMed  Google Scholar 

  29. Mercier G, Lennon AM, Renouf B, Dessouroux A, Ramaugé M, Courtin F, Pierre M (2004) MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes. J Mol Neurosci 24(2):207–216

    Article  CAS  PubMed  Google Scholar 

  30. Fleming SM, Ekhator OR, Ghisays V (2013) Assessment of sensorimotor function in mouse models of Parkinson’s disease. J Vis Exp (76)

  31. Paumier KL, Sortwell CE, Madhavan L, Terpstra B, Celano SL, Green JJ, Imus NM, Marckini N et al (2015) Chronic amitriptyline treatment attenuates nigrostriatal degeneration and significantly alters trophic support in a rat model of parkinsonism. Neuropsychopharmacology 40(4):874–883

    Article  CAS  PubMed  Google Scholar 

  32. Sun M, Kong L, Wang X, Lu X-g, Gao Q, Geller AI (2005) Comparison of the capability of GDNF, BDNF, or both, to protect nigrostriatal neurons in a rat model of Parkinson’s disease. Brain Res 1052(2):119–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138(2):155–175

    Article  CAS  PubMed  Google Scholar 

  34. Domanskyi A, Saarma M, Airavaara M (2015) Prospects of neurotrophic factors for Parkinson’s disease: comparison of protein and gene therapy. Hum Gene Ther 26(8):550–559

    Article  CAS  PubMed  Google Scholar 

  35. Tandberg E, Larsen JP, Aarsland D, Cummings JL (1996) The occurrence of depression in Parkinson’s disease: a community-based study. Arch Neurol 53(2):175–179

    Article  CAS  PubMed  Google Scholar 

  36. Slaughter JR, Slaughter KA, Nichols D, Holmes SE, Martens MP (2001) Prevalence, clinical manifestations, etiology, and treatment of depression in Parkinson’s disease. The Journal of Neuropsychiatry Clin Neurosci 13(2):187–196

    Article  CAS  Google Scholar 

  37. Rahman S, Griffin HJ, Quinn NP, Jahanshahi M (2008) Quality of life in Parkinson’s disease: the relative importance of the symptoms. Mov Disord 23(10):1428–1434

    Article  PubMed  Google Scholar 

  38. Raskind MA (2008) Diagnosis and treatment of depression comorbid with neurologic disorders. Am J Med 121(11):S28–S37

    Article  PubMed  Google Scholar 

  39. Ricci V, Pomponi M, Martinotti G, Bentivoglio A, Loria G, Bernardini S, Caltagirone C, Bria P et al (2010) Antidepressant treatment restores brain-derived neurotrophic factor serum levels and ameliorates motor function in Parkinson disease patients. J Clin Psychopharmacol 30(6):751–753

    Article  PubMed  Google Scholar 

  40. Paumier KL, Siderowf AD, Auinger P, Oakes D, Madhavan L, Espay AJ, Revilla FJ, Collier TJ (2012) Tricyclic antidepressants delay the need for dopaminergic therapy in early Parkinson’s disease. Mov Disord 27(7):880–887

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research has been supported by the 2013 Yeungnam University research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Young Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shadfar, S., Kim, YG., Katila, N. et al. Neuroprotective Effects of Antidepressants via Upregulation of Neurotrophic Factors in the MPTP Model of Parkinson’s Disease. Mol Neurobiol 55, 554–566 (2018). https://doi.org/10.1007/s12035-016-0342-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0342-0

Keywords

Navigation