Skip to main content

Advertisement

Log in

PLGA Nanoparticles Loaded Cerebrolysin: Studies on Their Preparation and Investigation of the Effect of Storage and Serum Stability with Reference to Traumatic Brain Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Cerebrolysin is a peptide mixture able to ameliorate symptomatology and delay progression of neurological disorders such as Alzheimer’s disease and dementia. The administration of this drug in humans presents several criticisms due to its short half-life, poor stability, and high doses needed to achieve the effect. This paper investigates the potential of polylactic-co-glycolide (PLGA) nanoparticles (NPs) as sustained release systems for iv administration of cerebrolysin in normal and brain injured rats. NPs were prepared by water-in-oil-in-water (w/o/w) double emulsion technique and characterized by light scattering for mean size and zeta potential and by scanning electron microscopy (SEM) for surface morphology. The NPs produced by double sonication under cooling at 60 W for 45 s, 12 mL of 1 % w:v of PVA, and 1:0.6 w:w drug/PLGA ratio (C-NPs4) displayed an adequate loading of drug (24 ± 1 mg/100 mg of NPs), zeta potential value (−13 mV), and average diameters (ranged from 250 to 330 nm) suitable to iv administration. SEM images suggested that cerebrolysin was molecularly dispersed into matricial systems and partially adhered to the NP surface. A biphasic release with an initial burst effect followed by sustained release over 24 h was observed. Long-term stability both at room and at low temperature of freeze-dried NPs was investigated. To gain deeper insight into NP stability after in vivo administration, the stability of the best NP formulation was also tested in serum. These PLGA NPs loaded with cerebrolysin were able to reduce brain pathology following traumatic brain injury. However, the size, the polydispersivity, and the surface properties of sample were significantly affected by the incubation time and the serum concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ruozi B, Belletti D, Bondioli L, De Vita A, Forni F, Vandelli MA, Tosi G (2012) Neurotrophic factors and neurodegenerative diseases: a delivery issue. Int Rev Neurobiol 102:207–247

    Article  CAS  PubMed  Google Scholar 

  2. Sharma HS, Johanson CE (2007) Intracerebroventricularly administered neurotrophins attenuate blood–cerebrospinal fluid barrier breakdown and brain pathology following whole-body hyperthermia an experimental study in the rat using biochemical and morphological approaches. Ann NY Acad Sci 1122:112–129

    Article  CAS  PubMed  Google Scholar 

  3. Sharma HS, Zimmermann-Meinzingen S, Johanson CE (2010) Cerebrolysin reduces blood-cerebrospinal fluid barrier permeability change, brain pathology, and functional deficits following traumatic brain injury in the rat. Ann NY Acad Sci 1199:125–137

    Article  CAS  PubMed  Google Scholar 

  4. Sharma HS, Zimmermann-Meinzingen S, Johanson CE (2010) Cerebrolysin attenuates blood-brain barrier and brain pathology following whole body hyperthermia in the rat. Acta Neurochir Suppl 106:321–325

    Article  PubMed  Google Scholar 

  5. Hartbauer M, Hutter-Paier B, Skofitsch G, Windisch M (2001) Antiapoptotic effects of the peptidergic drug cerebrolysin on primary cultures of embryonic chick cortical neurons. J Neural Transm 108:459–473

    Article  CAS  PubMed  Google Scholar 

  6. Feczkó T, Toth J, Dosa G, Gyensis J (2011) Optimization of protein encapsulation in PLGA nanoparticles. Chem Eng Process 50:757–765

    Article  Google Scholar 

  7. Costantino L, Gandolfi F, Tosi G, Rivasi F, Vandelli MA, Forni F (2005) Peptide-derivatized biodegradable nanoparticles able to cross the blood brain barrier. J Control Release 108:84–96

    Article  CAS  PubMed  Google Scholar 

  8. Tosi G, Vergoni AV, Ruozi B, Bondioli L, Badiali L, Rivasi F, Costantino L, Forni F, Vandelli MA (2010) Sialic-acid and glycopeptides conjugated PLGA nanoparticles for central nervous system targeting: in vivo pharmacological evidence and biodistribution. J Control Release 145:49–57

    Article  CAS  PubMed  Google Scholar 

  9. Tosi G, Badiali L, Ruozi B, Vergoni AV, Bondioli L, Ferrari A, Rivasi F, Forni F, Vandelli MA (2012) Can Leptin-derived sequence-modified nanoparticles be suitable tools for brain delivery? Nanomedicine 7:365–382

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, Chan HF, Leong KW (2013) Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev 65:104–120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P (2013) Biocompatibility of engineered nanoparticles for drug delivery. J Control Release 166:182–194

    Article  CAS  PubMed  Google Scholar 

  12. Sharma HS (2010) Selected combination of neurotrophins potentiate neuroprotection and functional recovery following spinal cord injury in the rat. Acta Neurochir Suppl 106:295–300

    Article  PubMed  Google Scholar 

  13. Dey PK, Sharma HS (1983) Ambient temperature and development of traumatic brain oedema in anaesthetized animals. Indian J Med Res 77:554–563

    CAS  PubMed  Google Scholar 

  14. Mohanty S, Dey PK, Sharma HS, Singh S, Chansouria JP, Olsson Y (1989) Role of histamine in traumatic brain edema. An experimental study in the rat. J Neurol Sci 90:87–97

    Article  CAS  PubMed  Google Scholar 

  15. Sharma HS, Wiklund L, Badgaiyan RD, Mohanty S, Alm P (2006) Intracerebral administration of neuronal nitric oxide synthase antiserum attenuates traumatic brain injury-induced blood-brain barrier permeability, brain edema formation, and sensory motor disturbances in the rat. Acta Neurochir Suppl 96:288–294

    Article  PubMed  Google Scholar 

  16. Sharma HS (2004) Influence of serotonin on the blood-brain and blood-spinal cord barriers. In: Sharma HS, Westman J (eds) The blood-spinal cord and brain barriers in health and disease. Elsevier Academic Press, San Diego, pp 117–158

    Chapter  Google Scholar 

  17. Liu W, Leng H, Zhu Z, Chen G (2001) Analysis of the content of ten kinds of metal elements in cerebrolysin by atomic absorption spectrophotometry. Guang Pu Xue Yu Guang Pu Fen Xi 21:397–399

    CAS  PubMed  Google Scholar 

  18. Gromova OA, Kudrin AV, Kataev SI, Mazina SS, Volkov A (2003) Effects of cerebrolysin on trace element homeostasis in the brain. Zh Nevrol Psikhiatr Im SS Korsakova 103:59–61

    CAS  Google Scholar 

  19. Bodmeier R, McGinity RW (1987) The preparation and evaluation of drug containing poly(dl-lactide) microspheres formed by the solvent evaporation method. Pharm Res 4:465–471

    Article  CAS  PubMed  Google Scholar 

  20. Rosca ID, Watari F, Uo M (2004) Microparticle formation and its mechanism in single and double emulsion solvent evaporation. J Control Release 99:271–280

    Article  CAS  PubMed  Google Scholar 

  21. Belletti D, Tosi G, Forni F, Gamberini MC, Baraldi C, Vandelli MA, Ruozi B (2012) Chemico-physical investigation of tenofovir loaded polymeric nanoparticles. Int J Pharm 436:753–763

    Article  CAS  PubMed  Google Scholar 

  22. Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP (2003) Physico-chemical stability of colloidal lipid particles. Biomaterials 24:4283–4300

    Article  CAS  PubMed  Google Scholar 

  23. Dobson J (2006) Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther 13:283–287

    Article  CAS  PubMed  Google Scholar 

  24. Sharma HS, Sharma A, Mössler H, Muresanu DF (2012) Neuroprotective effects of cerebrolysin, a combination of different active fragments of neurotrophic factors and peptides on the whole body hyperthermia-induced neurotoxicity: modulatory roles of co-morbidity factors and nanoparticle intoxication. Int Rev Neurobiol 102:249–276

    Article  CAS  PubMed  Google Scholar 

  25. Ruozi B, Belletti D, Forni F, Sharma A, Muresanu DF, Mossler H, Vandelli MA, Tosi G, Sharma HS (2014) Poly (D, L-lactide-co-glycolide) nanoparticles loaded with cerebrolysin display neuroprotective activity in a rat model of concussive head injury. CNS Neurol Disord Drug Targets 13:1475–1482

    Article  CAS  PubMed  Google Scholar 

  26. Sharma HS, Menon PK, Lafuente JV, Aguilar ZP, Wang YA, Muresanu DF, Mössler H, Patnaik R, Sharma A (2014) The role of functionalized magnetic iron oxide nanoparticles in the central nervous system injury and repair: new potentials for neuroprotection with cerebrolysin therapy. J Nanosci Nanotechnol 14:577–595

    Article  CAS  PubMed  Google Scholar 

  27. Sharma A, Muresanu DF, Mössler H, Sharma HS (2012) Superior neuroprotective effects of cerebrolysin in nanoparticle-induced exacerbation of hyperthermia-induced brain pathology. CNS Neurol Disord Drug Targets 11:7–25

    Article  CAS  PubMed  Google Scholar 

  28. Sharma HS, Dey PK (1986) Influence of long-term immobilization stress on regional blood-brain barrier permeability, cerebral blood flow and 5-HT level in conscious normotensive young rats. J Neurol Sci 72:61–76

    Article  CAS  PubMed  Google Scholar 

  29. Sharma HS, Dey PK (1986) Probable involvement of 5-hydroxytryptamine in increased permeability of blood-brain barrier under heat stress in young rats. Neuropharmacology 25:161–167

    Article  CAS  PubMed  Google Scholar 

  30. Sharma HS, Dey PK (1987) Influence of long-term acute heat exposure on regional blood-brain barrier permeability, cerebral blood flow and 5-HT level in conscious normotensive young rats. Brain Res 424:153–162

    Article  CAS  PubMed  Google Scholar 

  31. Sharma HS (1987) Effect of captopril (a converting enzyme inhibitor) on blood-brain barrier permeability and cerebral blood flow in normotensive rats. Neuropharmacology 26:85–92

    Article  CAS  PubMed  Google Scholar 

  32. Sharma HS, Olsson Y (1990) Edema formation and cellular alterations following spinal cord injury in the rat and their modification with p-chlorophenylalanine. Acta Neuropathol 79:604–610

    Article  CAS  PubMed  Google Scholar 

  33. Sharma HS (2007) Methods to produce hyperthermia-induced brain dysfunction. Prog Brain Res 162:173–199

    Article  CAS  PubMed  Google Scholar 

  34. Sharma HS, Olsson Y, Persson S, Nyberg F (1995) Trauma-induced opening of the blood-spinal cord barrier is reduced by indomethacin, an inhibitor of prostaglandin biosynthesis. Experimental observations in the rat using [131I]-sodium, Evans blue and lanthanum as tracers. Restor Neurol Neurosci 7:207–215

    PubMed  Google Scholar 

  35. Joshi DP, Lan-Chun-Fung YL, Pritchard JG (1979) Determination of poly (vinyl alcohol) via its complex with boric acid and iodine. Anal Chim Acta 104:153–160

    Article  CAS  Google Scholar 

  36. Biswal I, Dinda A, Das D, Si S, Chowdary KA (2011) Encapsulation protocol for highly hydrophilic drug using non biodegradable polymer. Int J Pharm Pharm Sci 3:256–259

    Google Scholar 

  37. Abdelwahed W, Degobert G, Stainmesse S, Fessi H (2006) Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev 58:1688–1713

    Article  CAS  PubMed  Google Scholar 

  38. Menon JU, Kona S, Wadajkar AS, Desai F, Vadla A, Nguyen KT (2012) Effects of surfactants on the properties of PLGA nanoparticles. J Biomed Mater Res A 100:1998–2005

    Article  PubMed  Google Scholar 

  39. Elliott KA, Jasper HH (1949) Measurement of experimentally induced brain swelling and shrinkage. Am J Physiol 157:122–129

    CAS  PubMed  Google Scholar 

  40. Katas H, Hussain Z, Awang SA (2013) Bovine serum albumin-loaded chitosan/dextran nanoparticles: preparation and evaluation of ex vivo colloidal stability in serum. J Nanomater. doi:10.1155/2013/536291

    Google Scholar 

Download references

Acknowledgments

This investigation is supported in part by grants from the Air Force Office of Scientific Research (EOARD, London, UK), and Air Force Material Command, USAF, under grant number FA8655-05-1-3065; Swedish Medical Research Council (Nr 2710-HSS), Swedish Strategic Research Foundation, Stockholm, Sweden; Göran Gustafsson Foundation, Stockholm, Sweden (HSS), Astra Zeneca, Mölndal, Sweden (HSS/AS), The University Grants Commission, New Delhi, India (HSS/AS), Ministry of Science and Technology, Govt. of India and Govt. of Sweden (HSS/AS), Indian Medical Research Council, New Delhi, India (HSS/AS); and India-EU Research Co-operation Program (AS/HSS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari S. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruozi, B., Belletti, D., Sharma, H.S. et al. PLGA Nanoparticles Loaded Cerebrolysin: Studies on Their Preparation and Investigation of the Effect of Storage and Serum Stability with Reference to Traumatic Brain Injury. Mol Neurobiol 52, 899–912 (2015). https://doi.org/10.1007/s12035-015-9235-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9235-x

Keywords

Navigation