Skip to main content

Advertisement

Log in

NCX1 Exchanger Cooperates with Calretinin to Confer Preconditioning-Induced Tolerance Against Cerebral Ischemia in the Striatum

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Recently, the Na+/Ca+2 exchanger NCX1 and the calcium binding protein calretinin have emerged as new molecular effectors of delayed preconditioning in the brain. In the present study, we investigated whether NCX1 and calretinin cooperate within the preconditioned striatum to confer neurons greater resistance to degeneration. Confocal microscopy analysis revealed that NCX1 expression was upregulated in calretinin-positive interneurons in the rat striatum after tolerance induction. Consistently, coimmunoprecipitation assays performed on human SHSY-5Y cells, a neuronal cell line which constitutively expresses calretinin, revealed a binding between NCX1 and calretinin. Finally, silencing of calretinin expression, both in vitro and in vivo, significantly prevented preconditioning-induced neuroprotection. Interestingly, our biochemical and functional studies showed that the selective silencing of calretinin in brain cells significantly prevented not only the preconditioning-induced upregulation of NCX1 expression and activity but also the activation of the prosurvival protein kinase Akt, which is involved in calretinin and NCX1 protective actions. Collectively, our results indicate that the Na+/Ca+2 exchanger NCX1 and the calcium binding protein calretinin cooperate within the striatum to confer tolerance against cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kirino T (2002) Ischemic tolerance. J Cereb Blood Flow Metab 22:1283–1296

    Article  PubMed  Google Scholar 

  2. Dirnagl U, Simon RP, Hallenbeck JM (2003) Ischemic neuroprotection. Trends Neurosci 26:248–254

    Article  CAS  PubMed  Google Scholar 

  3. Gidday JM (2006) Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 7:437–448

    Article  CAS  PubMed  Google Scholar 

  4. Tang Y, Pacary E, Fréret T, Divoux D, Petit E, Schumann-Bard P, Bernaudin M (2006) Effect of hypoxic preconditioning on brain genomic response before and following ischemia in the adult mouse: identification of potential neuroprotective candidates for stroke. Neurobiol Dis 21:18–28

    Article  CAS  PubMed  Google Scholar 

  5. Kaufmann AM, Firlik AD, Fukui MB, Wechsler LR, Jungries CA, Yonas H (1999) Peri-infarct depolarizations reveal penumbra-like conditions in striatum. Stroke 30:93–9

    Article  CAS  PubMed  Google Scholar 

  6. Umegaki M, Sanada Y, Waerzeggers Y, Rosner G, Yoshimine T, Heiss WD, Graf R (2005) Peri-infarct depolarizations reveal penumbra-like conditions in striatum. J Neurosci 25:1387–94

    Article  CAS  PubMed  Google Scholar 

  7. Holt DJ, Graybiel AM, Saper CB (1997) Neurochemical architecture of the human striatum. J Comp Neurol 21(384):1–25

    Article  Google Scholar 

  8. Kreitzer AC (2009) Physiology and pharmacology of striatal neurons. Annu Rev Neurosci 32:127–47

    Article  CAS  PubMed  Google Scholar 

  9. Rogers JH (1987) Calretinin: a gene for a novel calcium-binding protein expressed principally in neurons. J Cell Biol 105:1343–53

    Article  CAS  PubMed  Google Scholar 

  10. Baimbridge KG, Celio MR, Rogers JH (1992) Calcium-binding proteins in the nervous system. Trends Neurosci 15:303–308

    Article  CAS  PubMed  Google Scholar 

  11. Schwaller B (2010) Cytosolic Ca2+ buffers. Cold Spring Harb Perspect Biol 2:a004051

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Annunziato L, Pignataro G, Boscia F, Sirabella R, Formisano L, Saggese M, Cuomo O, Gala R, Secondo A, Viggiano D, Molinaro P, Valsecchi V, Tortiglione A, Adornetto A, Scorziello A, Cataldi M, Di Renzo GF (2007) ncx1, ncx2, and ncx3 gene product expression and function in neuronal anoxia and brain ischemia. Ann N Y Acad Sci 1099:413–26

    Article  CAS  PubMed  Google Scholar 

  13. Pignataro G, Boscia F, Esposito E, Sirabella R, Cuomo O, Vinciguerra A, Di Renzo G, Annunziato L (2012) NCX1 and NCX3: two new effectors of delayed preconditioning in brain ischemia. Neurobiol Dis 45:616–23

    Article  CAS  PubMed  Google Scholar 

  14. Annunziato L, Boscia F, Pignataro G (2013) Ionic transporter activity in astrocytes, microglia, and oligodendrocytes during brain ischemia. J Cereb Blood Flow Metab 33:969–82

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Pan TT, Neo KL, Hu LF, Yong QC, Bian JS (2008) H2S preconditioning-induced PKC activation regulates intracellular calcium handling in rat cardiomyocytes. Am J Physiol Cell Physiol 294:C169–77

    Article  CAS  PubMed  Google Scholar 

  16. Mohammadi E, Bigdeli MR (2013) Effects of preconditioning with normobaric hyperoxia on Na+/Ca2+ exchanger in the rat brain. Neuroscience 237:277–84

    Article  CAS  PubMed  Google Scholar 

  17. Valsecchi V, Pignataro G, Del Prete A, Sirabella R, Matrone C, Boscia F, Scorziello A, Sisalli MJ, Esposito E, Zambrano N, Di Renzo G, Annunziato L (2011) NCX1 is a novel target gene for hypoxia-inducible factor-1 in ischemic brain preconditioning. Stroke 42:754–63

    Article  CAS  PubMed  Google Scholar 

  18. Lee YJ, Miyake S, Wakita H, McMullen DC, Azuma Y, Auh S, Hallenbeck JM (2007) Protein SUMOylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cells. J Cereb Blood Flow Metab 27:950–62

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Boscia F, Gala R, Pannaccione A, Secondo A, Scorziello A, Di Renzo G, Annunziato L (2009) NCX1 expression and functional activity increase in microglia invading the infarct core. Stroke 40:3608–17

    Article  CAS  PubMed  Google Scholar 

  20. Pignataro G, Esposito E, Cuomo O, Sirabella R, Boscia F, Guida N, Di Renzo G, Annunziato L (2011) The NCX3 isoform of the Na+/Ca2+ exchanger contributes to neuroprotection elicited by ischemic postconditioning. J Cereb Blood Flow Metab 31:362–70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Boscia F, Esposito CL, Casamassa A, de Franciscis V, Annunziato L, Cerchia L (2013) The isolectin IB4 binds RET receptor tyrosine kinase in microglia. J Neurochem 126:428–36

    Article  CAS  PubMed  Google Scholar 

  22. Esposito F, Boscia F, Franco R, Tornincasa M, Fusco A, Kitazawa S, Looijenga LH, Chieffi P (2011) Down-regulation of oestrogen receptor-β associates with transcriptional co-regulator PATZ1 delocalization in human testicular seminomas. J Pathol 224:110–20

    Article  CAS  PubMed  Google Scholar 

  23. Boscia F, Ferraguti F, Moroni F, Annunziato L, Pellegrini-Giampietro DE (2008) mGlu1alpha receptors are co-expressed with CB1 receptors in a subset of interneurons in the CA1 region of organotypic hippocampal slice cultures and adult rat brain. Neuropharmacology 55:428–39

    Article  CAS  PubMed  Google Scholar 

  24. Boscia F, D’Avanzo C, Pannaccione A, Secondo A, Casamassa A, Formisano L, Guida N, Sokolow S, Herchuelz A, Annunziato L (2012) Silencing or knocking out the Na(+)/Ca(2+) exchanger-3 (NCX3) impairs oligodendrocyte differentiation. Cell Death Differ 19:562–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Esposito F, Boscia F, Gigantino V, Tornincasa M, Fusco A, Franco R, Chieffi P (2012) The high-mobility group A1-estrogen receptor β nuclear interaction is impaired in human testicular seminomas. J Cell Physiol 227:3749–55

    Article  CAS  PubMed  Google Scholar 

  26. Secondo A, Staiano IR, Scorziello A, Sirabella R, Boscia F, Adornetto A, Canzoniero LM, Di Renzo G, Annunziato L (2007) The Na+/Ca2+ exchanger isoform 3 (NCX3) but not isoform 2 (NCX2) and 1 (NCX1) singly transfected in BHK cells plays a protective role in a model of in vitro hypoxia. Ann N Y Acad Sci 1099:481–5

    Article  CAS  PubMed  Google Scholar 

  27. Katchanov J, Waeber C, Gertz K, Gietz A, Winter B, Brück W, Dirnagl U, Veh RW, Endres M (2003) Selective neuronal vulnerability following mild focal brain ischemia in the mouse. Brain Pathol 13:452–64

    Article  PubMed  Google Scholar 

  28. Ramamoorthy P, Shi H (2014) Ischemia induces different levels of hypoxia inducible factor-1α protein expression in interneurons and pyramidal neurons. Acta Neuropathol Commun 2(51):28

    Google Scholar 

  29. Petryszyn S, Beaulieu JM, Parent A, Parent M (2014) Distribution and morphological characteristics of striatal interneurons expressing calretinin in mice: a comparison with human and nonhuman primates. J Chem Neuroanat 59–60(51–61):29

    Google Scholar 

  30. Tsuboi K, Kimber TA, Shults CW (2000) (1997) Calretinin-containing axons and neurons are resistant to an intrastriatal 6-hydroxydopamine lesion. Brain Res 866:55–64

  31. Isaacs KR, Wolpoe ME, Jacobowitz DM (1997) Calretinin-immunoreactive dopaminergic neurons from embryonic rat mesencephalon are resistant to levodopa-induced neurotoxicity. Exp Neurol 146:25–32

    Article  CAS  PubMed  Google Scholar 

  32. Lukas W, Jones KA (1994) Cortical neurons containing calretinin are selectively resistant to calcium overload and excitotoxicity in vitro. Neuroscience 61:307–16

    Article  CAS  PubMed  Google Scholar 

  33. D’Orlando C, Fellay B, Schwaller B, Salicio V, Bloc A, Gotzos V, Celio MR (2001) Calretinin and calbindin D-28 k delay the onset of cell death after excitotoxic stimulation in transfected P19 cells. Brain Res 909:145–58

    Article  PubMed  Google Scholar 

  34. D’Orlando C, Celio MR, Schwaller B (2002) Calretinin and calbindin D-28 k, but not parvalbumin protect against glutamate-induced delayed excitotoxicity in transfected N18-RE 105 neuroblastoma-retina hybrid cells. Brain Res 945:181–190

    Article  PubMed  Google Scholar 

  35. Dong G, Gross K, Qiao F, Ferguson J, Callegari EA, Rezvani K, Zhang D, Gloeckner CJ, Ueffing M, Wang H (2012) Calretinin interacts with huntingtin and reduces mutant huntingtin-caused cytotoxicity. J Neurochem 123:437–46

    Article  CAS  PubMed  Google Scholar 

  36. Sisalli MJ, Secondo A, Esposito A, Valsecchi V, Savoia C, Di Renzo GF, Annunziato L, Scorziello A (2014) Endoplasmic reticulum refilling and mitochondrial calcium extrusion promoted in neurons by NCX1 and NCX3 in ischemic preconditioning are determinant for neuroprotection. Cell Death Differ 21:1142–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Li SZ, Wu F, Wang B, Wei GZ, Jin ZX, Zang YM, Zhou JJ, Wong TM (2007) Role of reverse mode Na+/Ca2+ exchanger in the cardioprotection of metabolic inhibition preconditioning in rat ventricular myocytes. Eur J Pharmacol 561:14–22

    Article  CAS  PubMed  Google Scholar 

  38. Christel CJ, Schaer R, Wang S, Henzi T, Kreiner L, Grabs D, Schwaller B, Lee A (2012) Calretinin regulates Ca2 + −dependent inactivation and facilitation of Ca(v)2.1 Ca2+ channels through a direct interaction with the α12.1 subunit. J Biol Chem 287:39766–75

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21

    Article  CAS  PubMed  Google Scholar 

  40. Schwaller B (2014) Calretinin: from a “simple” Ca2+ buffer to a multifunctional protein implicated in many biological processes. Front Neuroanat 8:3

    Article  PubMed Central  PubMed  Google Scholar 

  41. Formisano L, Saggese M, Secondo A, Sirabella R, Vito P, Valsecchi V, Molinaro P, Di Renzo G, Annunziato L (2008) The two isoforms of the Na+/Ca2+ exchanger, NCX1 and NCX3, constitute novel additional targets for the prosurvival action of Akt/protein kinase B pathway. Mol Pharmacol 73:727–37

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants PON01_01602 by MIUR and PON03PE_00146_1 by MIUR to LA, from Fondazione Italiana Sclerosi Multipla FISM 2012/R/1 to F.B, and Ricerca Sanitaria Progetto GR-2010-2318138 from Ministero della Salute to A. S. We thank Dr. Paola Merolla for the editorial revision and Mr. Carmine Capitale for technical support.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio Annunziato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boscia, F., Casamassa, A., Secondo, A. et al. NCX1 Exchanger Cooperates with Calretinin to Confer Preconditioning-Induced Tolerance Against Cerebral Ischemia in the Striatum. Mol Neurobiol 53, 1365–1376 (2016). https://doi.org/10.1007/s12035-015-9095-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9095-4

Keywords

Navigation