Skip to main content
Log in

A MicroRNA Profile in Fmr1 Knockout Mice Reveals MicroRNA Expression Alterations with Possible Roles in Fragile X Syndrome

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Fragile X syndrome (FXS), a common form of inherited mental retardation, is caused by a loss of expression of the fragile X mental retardation protein (FMRP). FMRP is involved in brain functions by interacting with mRNAs and microRNAs (miRNAs) that selectively control gene expression at translational level. However, little is known about the role of FMRP in regulating miRNA expression. Here, we found a development-dependant dynamic expression of Fmr1 gene (encoding FMRP) in mouse hippocampus with a small peak at postnatal day 7 (P7). MiRNA microarray analysis showed that the levels of 38 miRNAs showed a significant increase with about 15 ~ 250-folds and the levels of 26 miRNAs showed a significant decrease with only about 2 ~ 4-folds in the hippocampus of P7 Fmr1 knockout (KO) mice. The qRT-PCR assay showed that nine of the most increased miRNAs (>100-folds in microarrays) increased about 40 ~ 70-folds and their pre-miRNAs increased about 5 ~ 10-folds, but no significant difference in their pri-miRNA levels was observed, suggesting that the alterations of partial miRNAs are an indirect consequence of FMRP lacking. We further demonstrated that a set of protein-coding mRNAs, potentially targeted by the nine miRNAs, were down-regulated in the hippocampus of Fmr1 KO mice. Finally, luciferase assays demonstrated that miR-34b, miR-340, and miR-148a could down-regulate the reporter gene expression by interacting with the Met 3′ UTR. Taken together, these findings suggest that the miRNA expression alterations resulted from the absence of FMRP might contribute to molecular pathology of FXS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. De Boulle K, Verkerk AJ, Reyniers E, Vits L, Hendrickx J, Van Roy B, Van den Bos F, de Graaff E, Oostra BA, Willems PJ (1993) A point mutation in the FMR-1 gene associated with fragile X mental retardation. Nat Genet 3:31–35

    Article  PubMed  Google Scholar 

  2. Huber KM, Gallagher SM, Warren ST, Bear MF (2002) Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A 99:7746–7750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S, Victoria MF, Zhang FP et al (1991) Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65:905–914

    Article  CAS  PubMed  Google Scholar 

  4. Hessl D, Tassone F, Loesch DZ, Berry-Kravis E, Leehey MA, Gane LW, Barbato I, Rice C, Gould E, Hall DA et al (2005) Abnormal elevation of FMR1 mRNA is associated with psychological symptoms in individuals with the fragile X premutation. Am J Med Genet B Neuropsychiatr Genet 139B:115–121

    Article  CAS  PubMed  Google Scholar 

  5. Jacquemont S, Hagerman RJ, Hagerman PJ, Leehey MA (2007) Fragile-X syndrome and fragile X-associated tremor/ataxia syndrome: two faces of FMR1. Lancet Neurol 6:45–55

    Article  CAS  PubMed  Google Scholar 

  6. Bailey DB Jr, Hatton DD, Skinner M, Mesibov G (2001) Autistic behavior, FMR1 protein, and developmental trajectories in young males with fragile X syndrome. J Autism Dev Disord 31:165–174

    Article  PubMed  Google Scholar 

  7. O'Donnell WT, Warren ST (2002) A decade of molecular studies of fragile X syndrome. Annu Rev Neurosci 25:315–338

    Article  PubMed  Google Scholar 

  8. Kremer EJ, Pritchard M, Lynch M, Yu S, Holman K, Baker E, Warren ST, Schlessinger D, Sutherland GR, Richards RI (1991) Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n. Science 252:1711–1714

    Article  CAS  PubMed  Google Scholar 

  9. Feng Y, Zhang F, Lokey LK, Chastain JL, Lakkis L, Eberhart D, Warren ST (1995) Translational suppression by trinucleotide repeat expansion at FMR1. Science 268:731–734

    Article  CAS  PubMed  Google Scholar 

  10. Hirst M, Grewal P, Flannery A, Slatter R, Maher E, Barton D, Fryns JP, Davies K (1995) Two new cases of FMR1 deletion associated with mental impairment. Am J Hum Genet 56:67–74

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Trottier Y, Imbert G, Poustka A, Fryns JP, Mandel JL (1994) Male with typical fragile X phenotype is deleted for part of the FMR1 gene and for about 100 kb of upstream region. Am J Med Genet 51:454–457

    Article  CAS  PubMed  Google Scholar 

  12. Siomi H, Choi M, Siomi MC, Nussbaum RL, Dreyfuss G (1994) Essential role for KH domains in RNA binding: impaired RNA binding by a mutation in the KH domain of FMR1 that causes fragile X syndrome. Cell 77:33–39

    Article  CAS  PubMed  Google Scholar 

  13. Chelly J, Mandel JL (2001) Monogenic causes of X-linked mental retardation. Nat Rev Genet 2:669–680

    Article  CAS  PubMed  Google Scholar 

  14. Zang JB, Nosyreva ED, Spencer CM, Volk LJ, Musunuru K, Zhong R, Stone EF, Yuva-Paylor LA, Huber KM, Paylor R et al (2009) A mouse model of the human fragile X syndrome I304N mutation. PLoS Genet 5:e1000758

    Article  PubMed Central  PubMed  Google Scholar 

  15. Antar LN, Dictenberg JB, Plociniak M, Afroz R, Bassell GJ (2005) Localization of FMRP-associated mRNA granules and requirement of microtubules for activity-dependent trafficking in hippocampal neurons. Genes Brain Behav 4:350–359

    Article  CAS  PubMed  Google Scholar 

  16. Darnell JC, Klann E (2013) The translation of translational control by FMRP: therapeutic targets for FXS. Nat Neurosci 16:1530–1536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A, Fraser CE, Stone EF, Chen C, Fak JJ, Chi SW et al (2011) FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146:247–261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Mercaldo V, Descalzi G, Zhuo M (2009) Fragile X mental retardation protein in learning-related synaptic plasticity. Mol Cells 28:501–507

    Article  CAS  PubMed  Google Scholar 

  19. Sidorov MS, Auerbach BD, Bear MF (2013) Fragile X mental retardation protein and synaptic plasticity. Mol Brain 6:15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Ashley CT Jr, Wilkinson KD, Reines D, Warren ST (1993) FMR1 protein: conserved RNP family domains and selective RNA binding. Science 262:563–566

    Article  CAS  PubMed  Google Scholar 

  21. Blackwell E, Zhang X, Ceman S (2010) Arginines of the RGG box regulate FMRP association with polyribosomes and mRNA. Hum Mol Genet 19:1314–1323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Eberhart DE, Malter HE, Feng Y, Warren ST (1996) The fragile X mental retardation protein is a ribonucleoprotein containing both nuclear localization and nuclear export signals. Hum Mol Genet 5:1083–1091

    Article  CAS  PubMed  Google Scholar 

  23. Feng Y, Gutekunst CA, Eberhart DE, Yi H, Warren ST, Hersch SM (1997) Fragile X mental retardation protein: nucleocytoplasmic shuttling and association with somatodendritic ribosomes. J Neurosci 17:1539–1547

    CAS  PubMed  Google Scholar 

  24. Verheij C, Bakker CE, de Graaff E, Keulemans J, Willemsen R, Verkerk AJ, Galjaard H, Reuser AJ, Hoogeveen AT, Oostra BA (1993) Characterization and localization of the FMR-1 gene product associated with fragile X syndrome. Nature 363:722–724

    Article  CAS  PubMed  Google Scholar 

  25. Blonden L, van’t Padje S, Severijnen LA, Destree O, Oostra BA, Willemsen R (2005) Two members of the Fxr gene family, Fmr1 and Fxr1, are differentially expressed in Xenopus tropicalis. Int J Dev Biol 49:437–441

    Article  CAS  PubMed  Google Scholar 

  26. Duan R, Jin P (2006) Identification of messenger RNAs and microRNAs associated with fragile X mental retardation protein. Methods Mol Biol 342:267–276

    CAS  PubMed  Google Scholar 

  27. Jin P, Zarnescu DC, Ceman S, Nakamoto M, Mowrey J, Jongens TA, Nelson DL, Moses K, Warren ST (2004) Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat Neurosci 7:113–117

    Article  CAS  PubMed  Google Scholar 

  28. Edbauer D, Neilson JR, Foster KA, Wang CF, Seeburg DP, Batterton MN, Tada T, Dolan BM, Sharp PA, Sheng M (2010) Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65:373–384

    Article  CAS  PubMed  Google Scholar 

  29. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  30. Nunez-Iglesias J, Liu CC, Morgan TE, Finch CE, Zhou XJ (2010) Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer's disease cortex reveals altered miRNA regulation. PLoS One 5:e8898

    Article  PubMed Central  PubMed  Google Scholar 

  31. Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033

    Article  CAS  PubMed  Google Scholar 

  32. Liu N, Chen NY, Cui RX, Li WF, Li Y, Wei RR, Zhang MY, Sun Y, Huang BJ, Chen M et al (2012) Prognostic value of a microRNA signature in nasopharyngeal carcinoma: a microRNA expression analysis. Lancet Oncol 13:633–641

    Article  CAS  PubMed  Google Scholar 

  33. Schmittgen TD, Jiang J, Liu Q, Yang L (2004) A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res 32:e43

    Article  PubMed Central  PubMed  Google Scholar 

  34. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  CAS  PubMed  Google Scholar 

  35. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLoS Biol 2:e363

    Article  PubMed Central  PubMed  Google Scholar 

  36. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    Article  CAS  PubMed  Google Scholar 

  37. Kuhn RM, Karolchik D, Zweig AS, Trumbower H, Thomas DJ, Thakkapallayil A, Sugnet CW, Stanke M, Smith KE, Siepel A et al (2007) The UCSC genome browser database: update 2007. Nucleic Acids Res 35:D668–D673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Tao Y, Sam L, Li J, Friedman C, Lussier YA (2007) Information theory applied to the sparse gene ontology annotation network to predict novel gene function. Bioinformatics 23:i529–i538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Lu R, Wang H, Liang Z, Ku L, O'Donnell WT, Li W, Warren ST, Feng Y (2004) The fragile X protein controls microtubule-associated protein 1B translation and microtubule stability in brain neuron development. Proc Natl Acad Sci U S A 101:15201–15206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Michel CI, Kraft R, Restifo LL (2004) Defective neuronal development in the mushroom bodies of Drosophila fragile X mental retardation 1 mutants. J Neurosci 24:5798–5809

    Article  PubMed  Google Scholar 

  41. Jarrard LE (1993) On the role of the hippocampus in learning and memory in the rat. Behav Neural Biol 60:9–26

    Article  CAS  PubMed  Google Scholar 

  42. Thompson RF (1986) The neurobiology of learning and memory. Science 233:941–947

    Article  CAS  PubMed  Google Scholar 

  43. Guo W, Allan AM, Zong R, Zhang L, Johnson EB, Schaller EG, Murthy AC, Goggin SL, Eisch AJ, Oostra BA et al (2011) Ablation of Fmrp in adult neural stem cells disrupts hippocampus-dependent learning. Nat Med 17:559–565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Braun K, Segal M (2000) FMRP involvement in formation of synapses among cultured hippocampal neurons. Cereb Cortex 10:1045–1052

    Article  CAS  PubMed  Google Scholar 

  45. Romijn HJ, Hofman MA, Gramsbergen A (1991) At what age is the developing cerebral cortex of the rat comparable to that of the full-term newborn human baby? Early Hum Dev 26:61–67

    Article  CAS  PubMed  Google Scholar 

  46. Bilousova TV, Dansie L, Ngo M, Aye J, Charles JR, Ethell DW, Ethell IM (2009) Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet 46:94–102

    Article  CAS  PubMed  Google Scholar 

  47. Fridell RA, Benson RE, Hua J, Bogerd HP, Cullen BR (1996) A nuclear role for the fragile X mental retardation protein. Embo J 15:5408–5414

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Plante I, Davidovic L, Ouellet DL, Gobeil LA, Tremblay S, Khandjian EW, Provost P (2006) Dicer-derived microRNAs are utilized by the fragile X mental retardation protein for assembly on target RNAs. J Biomed Biotechnol 2006:64347

    PubMed Central  PubMed  Google Scholar 

  49. Cheever A, Ceman S (2009) Phosphorylation of FMRP inhibits association with Dicer. RNA 15:362–366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Shi W, Hendrix D, Levine M, Haley B (2009) A distinct class of small RNAs arises from pre-miRNA-proximal regions in a simple chordate. Nat Struct Mol Biol 16:183–189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Okada C, Yamashita E, Lee SJ, Shibata S, Katahira J, Nakagawa A, Yoneda Y, Tsukihara T (2009) A high-resolution structure of the pre-microRNA nuclear export machinery. Science 326:1275–1279

    Article  CAS  PubMed  Google Scholar 

  52. Ascano M Jr, Mukherjee N, Bandaru P, Miller JB, Nusbaum JD, Corcoran DL, Langlois C, Munschauer M, Dewell S, Hafner M et al (2012) FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature 492:382–386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Brown V, Jin P, Ceman S, Darnell JC, O'Donnell WT, Tenenbaum SA, Jin X, Feng Y, Wilkinson KD, Keene JD et al (2001) Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107:477–487

    Article  CAS  PubMed  Google Scholar 

  54. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  55. Migliore C, Petrelli A, Ghiso E, Corso S, Capparuccia L, Eramo A, Comoglio PM, Giordano S (2008) MicroRNAs impair MET-mediated invasive growth. Cancer Res 68:10128–10136

    Article  CAS  PubMed  Google Scholar 

  56. Judson MC, Bergman MY, Campbell DB, Eagleson KL, Levitt P (2009) Dynamic gene and protein expression patterns of the autism-associated met receptor tyrosine kinase in the developing mouse forebrain. J Comp Neurol 513:511–531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Martins GJ, Shahrokh M, Powell EM (2011) Genetic disruption of Met signaling impairs GABAergic striatal development and cognition. Neuroscience 176:199–209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant numbers 81171073, 30870876, 81371436, 31070928, and 81271434), the Guangzhou Scholar Project (grant number 10A011G), and the Scientific Research of Guangzhou Municipal Colleges and Universities (grant number 10A211). We are indebted to Dr. Ben A. Oostra (Erasmus University, Netherland) for kindly providing the FVB Fmr1 knockout mice and the FVB wild-type mice. We are grateful to the He Shanheng Charity Foundation for contributing to the development of this institute.

Conflict of Interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Hong Yi or Yue-Sheng Long.

Additional information

Ting Liu and Rui-Ping Wan contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

The mRNAs of partial miRNA target genes present in the mouse hippocampus. These data of the mRNA levels determined by in situ hybridization were downloaded from the public data from Allen Brain Atlas Database (http://www.brain-map.org/) (GIF 133 kb)

High resolution image (TIFF 4238 kb)

Table S1

(XLS 46 kb)

Table S2

(XLS 71 kb)

Table S3

(XLS 50 kb)

Table S4

(XLS 3359 kb)

Table S5

(XLS 619 kb)

Table S6

(DOC 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Wan, RP., Tang, LJ. et al. A MicroRNA Profile in Fmr1 Knockout Mice Reveals MicroRNA Expression Alterations with Possible Roles in Fragile X Syndrome. Mol Neurobiol 51, 1053–1063 (2015). https://doi.org/10.1007/s12035-014-8770-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8770-1

Keywords

Navigation