Skip to main content

Advertisement

Log in

Influence of Zinc on Calcium-Dependent Signal Transduction Pathways During Aluminium-Induced Neurodegeneration

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Metals perform important functions in the normal physiological system, and alterations in their levels may lead to a number of diseases. Aluminium (Al) has been implicated as a major risk factor, which is linked to several neurodegenerative diseases including Alzheimer’s disease and Parkinson’s disease. On the other hand, zinc (Zn) is considered as a neuromodulator and an essential dietary element that regulates a number of biological activities in our body. The aim of the present study was to investigate the effects of Zn supplementation, if any, in ameliorating the changes induced by Al on calcium signalling pathway. Male Sprague Dawley rats weighing 140–160 g were divided into four different groups viz.: normal control, aluminium treated (100 mg/kg b.wt./day via oral gavage), zinc treated (227 mg/l in drinking water) and combined aluminium and zinc treated. All the treatments were carried out for a total duration of 8 weeks. Al treatment decreased the Ca2+ ATPase activity whereas increased the levels of 3′, 5′-cyclic adenosine monophosphate, intracellular calcium and total calcium content in both the cerebrum and cerebellum, which, however, were modulated upon Zn supplementation. Al treatment exhibited a significant elevation in the protein expressions of phospholipase C, inositol triphosphate and protein kinase A but decreased the expression of protein kinase C, which, however, was reversed upon Zn co-treatment. Al treatment also revealed alterations in neurohistoarchitecture in the form of calcium deposits, which were improved upon zinc co-administration. The present study, therefore, suggests that zinc regulates the intracellular calcium signalling pathway during aluminium-induced neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Al:

Aluminium

Zn:

Zinc

Ca:

Calcium

PLC:

Phospholipase C

IP3:

Inositol triphosphate

PKA:

Protein kinase A

PKC:

Protein kinase C

References

  1. Campbell A (2006) The role of aluminum and copper on neuroinflammation and Alzheimer’s disease. J Alzheimers Dis 10:165–172

    PubMed  Google Scholar 

  2. Weiss B (2010) Lead, manganese and methylmercury as risk factors for neurobehavioral impairment in advanced age. Int J Alzheimers Dis. doi:10.4061/2011/607543

    PubMed  PubMed Central  Google Scholar 

  3. Selkoe DJ, Lansbury PJ Jr. (1999) Alzheimer’s disease is the most common neurodegenerative disorder. In: Siegel GJ, Agranoff BW, Albers RW et al (eds) Basic neurochemistry: molecular, cellular and medical aspects, 6th edn. Lippincott-Raven, Philadelphia. Available via: http://www.ncbi.nlm.nih.gov/books/NBK27944/

  4. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3:186–191

    Article  PubMed  Google Scholar 

  5. Miu AC, Benga O (2006) Aluminum and Alzheimer’s disease: a new look. J Alzheimers Dis 10:179–201

    PubMed  CAS  Google Scholar 

  6. Walton JR (2010) Evidence for participation of aluminum in neurofibrillary tangle formation and growth in Alzheimer’s disease. J Alzheimers Dis 22:65–72

    PubMed  CAS  Google Scholar 

  7. Moore PB, Day JP, Taylor GA, Ferrier IN, Fifield LK, Edwardson JA (2000) Absorption of aluminium-26 in Alzheimer’s disease, measured using accelerator mass spectrometry. Dement Geriatr Cogn Disord 11:66–69

    Article  PubMed  CAS  Google Scholar 

  8. Yumoto S, Kakimi S, Ohsaki A, Ishikawa A (2009) Demonstration of aluminum in amyloid fibers in the cores of senile plaques in the brains of patients with Alzheimer’s disease. J Inorg Biochem 103:1579–1584

    Article  PubMed  CAS  Google Scholar 

  9. Cooke K, Gould MH (1991) The health effects of aluminium—a review. J R Soc Health 111:163–168

    Article  PubMed  CAS  Google Scholar 

  10. Cao H, Qiao L, Zhang H, Chen J (2010) Exposure and risk assessment for aluminium and heavy metals in Puerh tea. Sci Total Environ 408:2777–2784

    Article  PubMed  CAS  Google Scholar 

  11. Yokel RA, Hicks CL, Florence RL (2008) Aluminium bioavailability from basic sodium aluminium phosphate, an approved food additive emulsifying agent, incorporated in cheese. Food Chem Toxicol 46:2261–2266

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Kaizer RR, Corrêa MC, Spanevello RM, Morsch VM, Mazzanti CM, Gonçalves JF, Schetinger MR (2005) Acetylcholinesterase activation and enhanced lipid peroxidation after long-term exposure to low levels of aluminum on different mouse brain regions. J Inorg Biochem 99:1865–1870

    Article  PubMed  CAS  Google Scholar 

  13. Lukiw WJ (2001) Aluminum and gene transcription in the mammalian central nervous system-implications for Alzheimer’s Disease. In: Exley C (ed) Aluminium and Alzheimer’s disease: the science that describes the link. Elsevier Science, Amsterdam, pp 147–169

    Chapter  Google Scholar 

  14. Sumathi T, Shobana C, Kumari BR, Nandhini DN (2011) Protective role of Cynodon dactylon in ameliorating the aluminium-induced neurotoxicity in rat brain regions. Biol Trace Elem Res 144:843–1853

    Article  PubMed  CAS  Google Scholar 

  15. Li XP, Yang YJ, Hu H, Wang QN (2006) Effect of aluminum trichloride on dissociated Ca2+ in hippocampus neuron cell as well as learning and memory. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 24:161–163

    PubMed  CAS  Google Scholar 

  16. Walton JR (2007) An aluminum-based rat model for Alzheimer’s disease exhibits oxidative damage, inhibition of PP2A activity, hyperphosphorylated tau, and granulovacuolar degeneration. J Inorg Biochem 101:1275–1284

    Article  PubMed  CAS  Google Scholar 

  17. Abu-Taweel GM, Ajarem JS, Ahmad M (2012) Neurobehavioral toxic effects of perinatal oral exposure to aluminum on the developmental motor reflexes, learning, memory and brain neurotransmitters of mice offspring. Pharmacol Biochem Behav 101:49–56

    Article  PubMed  CAS  Google Scholar 

  18. Moumen R, Ait-Oukhatar N, Bureau F, Fleury C, Bouglé D, Arhan P, Neuville D, Viader F (2001) Aluminium increases xanthine oxidase activity and disturbs antioxidant status in the rat. J Trace Elem Med Biol 15:89–93

    Article  PubMed  CAS  Google Scholar 

  19. Ghribi O, Herman MM, Spaulding NK, Savory J (2002) Lithium inhibits aluminum-induced apoptosis in rabbit hippocampus, by preventing cytochrome c translocation, Bcl-2 decrease, Bax elevation and caspase-3 activation. J Neurochem 82:137–145

    Article  PubMed  CAS  Google Scholar 

  20. Singla N, Dhawan DK (2012) Regulatory role of zinc during aluminium-induced altered carbohydrate metabolism in rat brain. J Neurosci Res 90:698–705

    Article  PubMed  CAS  Google Scholar 

  21. Zatta P, Lain E, Cagnolini C (2000) Effects of aluminum on activity of krebs cycle enzymes and glutamate dehydrogenase in rat brain homogenate. Eur J Biochem 267:3049–3055

    Article  PubMed  CAS  Google Scholar 

  22. Kurita H, Nakatomi A, Shimahara H, Yazawa M, Ohki SY (2005) Al(3+) interaction sites of calmodulin and the Al(3+) effect on target binding of calmodulin. Biochem Biophys Res Commun 333:1060–1065

    Article  PubMed  CAS  Google Scholar 

  23. Silva VS, Nunes MA, Cordeiro JM, Calejo AI, Santos S, Neves P, Sykes A, Morgado F, Dunant Y, Gonçalves PP (2007) Comparative effects of aluminum and ouabain on synaptosomal choline uptake, acetylcholine release and (Na+/K+) ATPase. Toxicology 236:158–177

    Article  PubMed  CAS  Google Scholar 

  24. Bojarski L, Herms J, Kuznicki J (2008) Calcium dysregulation in Alzheimer’s disease. Neurochem Int 52:621–633

    Article  PubMed  CAS  Google Scholar 

  25. Berridge MJ (2013) Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia. Prion 7:2–13

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Popescu BF, Robinson CA, Rajput A, Rajput AH, Harder SL, Nichol H (2009) Iron, copper, and zinc distribution of the cerebellum. Cerebellum 8:74–79

    Article  PubMed  CAS  Google Scholar 

  27. Adamo AM, Zago MP, Mackenzie GG, Aimo L, Keen CL, Keenan A, Oteiza PI (2010) The role of zinc in the modulation of neuronal proliferation and apoptosis. Neurotox Res 17:1–14

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. O Dell BL (2000) Role of zinc in plasma membrane function. J Nutr 130:1432S–1436S

    CAS  Google Scholar 

  29. Song Y, Xue Y, Liu X, Wang P, Liu L (2008) Effects of acute exposure to aluminum on blood–brain barrier and the protection of zinc. Neurosci Lett 445:42–46

    Article  PubMed  CAS  Google Scholar 

  30. Trombley PQ, Blakemore LJ, Hill BJ (2011) Zinc modulation of glycine receptors. Neuroscience 186:32–38

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Amico-Ruvio SA, Murthy SE, Smith TP, Popescu GK (2011) Zinc effects on NMDA receptor gating kinetics. Biophys J 100:1910–1918

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Takeda A (2001) Zinc homeostasis and functions of zinc in the brain. Biometals 14:343–351

    Article  PubMed  CAS  Google Scholar 

  33. Bitanihirwe BK, Cunningham MG (2009) Zinc: the brain’s dark horse. Synapse 63:1029–1049

    Article  PubMed  CAS  Google Scholar 

  34. Browning JD, O’Dell BL (1994) Low zinc status in guinea pigs impairs calcium uptake by brain synaptosomes. J Nutr 124:436–443

    PubMed  CAS  Google Scholar 

  35. Kiedrowski L (2012) Cytosolic acidification and intracellular zinc release in hippocampal neurons. J Neurochem 121:438–450

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Rudolf E, Cervinka M (2006) The role of intracellular zinc in chromium (VI)-induced oxidative stress, DNA damage and apoptosis. Chem Biol Interact 162:212–227

    Article  PubMed  CAS  Google Scholar 

  37. Bhalla P, Chadha VD, Dhawan DK (2007) Effectiveness of zinc in modulating lithium induced biochemical and behavioral changes in rat brain. Cell Mol Neurobiol 27:595–607

    Article  PubMed  CAS  Google Scholar 

  38. Joshi D, Mittal DK, Shukla S, Srivastav AK (2012) Therapeutic potential of N acetylcysteine with antioxidants (Zn and Se) supplementation against dimethylmercury toxicity in male albino rats. Exp Toxicol Pathol 64:103–108

    Article  PubMed  CAS  Google Scholar 

  39. Franco JL, Posser T, Mattos JJ, Trevisan R, Brocardo PS, Rodrigues AL, Leal RB, Farina M, Marques MR, Bainy AC, Dafre AL (2009) Zinc reverses malathion-induced impairment in antioxidant defenses. Toxicol Lett 187:137–143

    Article  PubMed  CAS  Google Scholar 

  40. An WL, Pei JJ, Nishimura T, Winblad B, Cowburn RF (2005) Zinc-induced anti-apoptotic effects in SH-SY5Y neuroblastoma cells via the extracellular signal-regulated kinase 1/2. Brain Res Mol Brain Res 135:40–47

    Article  PubMed  CAS  Google Scholar 

  41. Singla N, Dhawan DK (2013) Zinc, a neuroprotective agent against aluminum-induced oxidative DNA injury. Mol Neurobiol 48:1–12

    Article  PubMed  CAS  Google Scholar 

  42. Kakkar V, Kaur IP (2011) Evaluating potential of curcumin loaded solid lipid nanoparticles in aluminium induced behavioural, biochemical and histopathological alterations in mice brain. Food Chem Toxicol 49:2906–2913

    Article  PubMed  CAS  Google Scholar 

  43. Sidhu P, Garg ML, Dhawan DK (2004) Protective role of zinc in nickel induced hepatotoxicity in rats. Chem Biol Interact 150:199–209

    Article  PubMed  CAS  Google Scholar 

  44. Goel A, Dani V, Dhawan DK (2007) Zinc mediates normalization of hepatic drug metabolizing enzymes in chlorpyrifos-induced toxicity. Toxicol Lett 169:26–33

    Article  PubMed  CAS  Google Scholar 

  45. Gray EG, Whittaker VP (1962) The isolation of nerve endings from brain, an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J Anat 96:79–88

    PubMed  CAS  PubMed Central  Google Scholar 

  46. Edelfors S, Ravn-Jonsen A (1991) Effects of simultaneous ethanol and toluene exposure on nerve cells measured by changes in synaptosomal calcium uptake and (Ca2+/Mg2+)-ATPase activity. Pharmacol Toxicol 69:90–95

    Article  PubMed  CAS  Google Scholar 

  47. Butler FE (1961) Determination of tritium in water and urine. Liquid scintillation counting and rate drift determination. Anal Chem 33:409–414

    Article  CAS  Google Scholar 

  48. Jones DH, Matus AI (1974) Isolation of synaptic plasma membrane from brain by combined flotation–sedimentation density gradient centrifugation. Biochim Biophys Acta 356:276–287

    Article  PubMed  CAS  Google Scholar 

  49. Desaiah D, Chetty CS, Rao KS (1985) Chlordecone inhibition of calmodulin activated calcium ATPase in rat brain synaptosomes. J Toxicol Environ Health 16:189–195

    Article  PubMed  CAS  Google Scholar 

  50. Fiske SH, Subbarow Y (1925) The colorimetric determination of phosphorous. J Biol Chem 66:375–400

    CAS  Google Scholar 

  51. Wallach DFH, Kamat VB (1966) Assay for membrane Na+–K+ATPase. In: Colowick SP, Kaplan O (eds) Methods in enzymology. Academic, New York, pp 164–165

    Google Scholar 

  52. Adamson P, Hajimahammadreza I, Brammer MJ, Campbel IC (1989) Intrasynaptosomal free calcium concentration is increased by phorbol esters via a 1,4 dihydropyridine (L-type) Ca2+ channel. Eur J Pharmacol 162:59–66

    Article  PubMed  CAS  Google Scholar 

  53. Zumkley H, Bertram HP, Lison A, Knoll O, Losse H (1979) Aluminum, zinc and copper concentrations in plasma in chronic renal insufficiency. Clin Nephrol 12:18–21

    PubMed  CAS  Google Scholar 

  54. Towbin H, Staehelin T, Gordon J (1992) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Biotechnology 24:145–149

    PubMed  CAS  Google Scholar 

  55. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Follin-phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  56. Zundorf G, Reiser G (2011) Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxid Redox Signal 14:1275–1288

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gleichmann M, Mattson MP (2011) Neuronal calcium homeostasis and dysregulation. Antioxid Redox Signal 14:1261–1273

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Wang H, Zhang M (2012) The role of Ca2+-stimulated adenylyl cyclases in bidirectional synaptic plasticity and brain function. Rev Neurosci 23:67–78

    PubMed  Google Scholar 

  59. Thanawala MS, Regehr WG (2013) Presynaptic calcium influx controls neurotransmitter release in part by regulating the effective size of the readily releasable pool. J Neurosci 33:4625–4633

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lubkowska A, Chlubek D, Machoy-Mokrzyńska A, Noceń I, Zyluk B, Nowacki P (2004) Concentrations of fluorine, aluminum and magnesium in some structures of the central nervous system of rats exposed to aluminum and fluorine in drinking water. Ann Acad Med Stetin 50:73–76

    PubMed  Google Scholar 

  61. Kaur A, Gill KD (2005) Disruption of neuronal calcium homeostasis after chronic aluminium toxicity in rats. Basic Clin Pharmacol Toxicol 96:118–122

    Article  PubMed  CAS  Google Scholar 

  62. Raftos JE, Lew VL (1995) Effect of intracellular magnesium on calcium extrusion by the plasma membrane calcium pump of intact human red cells. J Physiol 489:63–72

    PubMed  CAS  PubMed Central  Google Scholar 

  63. Sarin S, Julka D, Gill KD (1997) Regional alterations in calcium homeostasis in the primate brain following chronic aluminium exposure. Mol Cell Biochem 168:95–100

    Article  PubMed  CAS  Google Scholar 

  64. Siegel N, Haug AR (1983) Aluminum interaction with calmodulin: evidence for altered structure and function from optical and enzymatic studies. Biochim Biophys Acta 744:36–45

    Article  PubMed  CAS  Google Scholar 

  65. Julka D, Gill KD (1996) Altered calcium homeostasis: a possible mechanisms of aluminium-induced neurotoxicity. Biochim Biophys Acta 1315:47–54

    Article  PubMed  Google Scholar 

  66. Law JS, McBride SA, Graham S, Nelson NR, Slotnick BM, Henkin RI (1988) Zinc deficiency decreases the activity of calmodulin regulated cyclic nucleotide phosphodiesterases in vivo in selected rat tissues. Biol Trace Elem Res 16:221–226

    Article  PubMed  CAS  Google Scholar 

  67. Prabhu SD, Salama G (1990) The heavy metal ions Ag+ and Hg 2+ trigger calcium release from cardiac sarcoplasmic reticulum. Arch Biochem Biophys 277:47–55

    Article  PubMed  CAS  Google Scholar 

  68. Aimo L, Cherr GN, Oteiza PI (2010) Low extracellular zinc increases neuronal oxidant production through NADPH oxidase and nitric oxide synthase activation. Free Radic Biol Med 48:1577–1587

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147–163

    Article  PubMed  CAS  Google Scholar 

  70. Jaya Prasanthi RP, Hariprasad RG, Bhuvaneswari DC, Rajarami Reddy G (2005) Zinc and calcium reduce lead induced perturbations in the aminergic system of developing brain. Biometals 18:615–626

    Article  PubMed  CAS  Google Scholar 

  71. Koenig ML, Jope RS (1987) Aluminium inhibits fast phase of voltage-dependent calcium influx into synaptosomes. J Neurochem 49:316–320

    Article  PubMed  CAS  Google Scholar 

  72. Walton JR (2012) Aluminum disruption of calcium homeostasis and signal transduction resembles change that occurs in aging and Alzheimer’s disease. J Alzheimers Dis 29:255–273

    PubMed  CAS  Google Scholar 

  73. O Dell BL, Browning JD (2011) Zinc deprivation impairs growth factor-stimulated calcium influx into murine 3T3 cells associated with decreased cell proliferation. J Nutr 141:1036–1040

    Article  CAS  Google Scholar 

  74. Kitamura Y, Iida Y, Abe J, Ueda M, Mifune M, Kasuya F, Ohta M, Igarashi K, Saito Y, Saji H (2006) Protective effect of zinc against ischemic neuronal injury in a middle cerebral artery occlusion model. J Pharmacol Sci 100:142–148

    Article  PubMed  CAS  Google Scholar 

  75. Franco-Vidal V, Beurg M, Darrouzet V, Bébéar JP, Skinner LJ, Dulon D (2008) Zinc protection against pneumolysin toxicity on rat cochlear hair cells. Audiol Neurootol 13:65–70

    Article  PubMed  CAS  Google Scholar 

  76. Johnson GV, Jope RS (1987) Aluminum alters cyclic AMP and cyclic GMP levels but not presynaptic cholinergic markers in rat brain in vivo. Brain Res 403:1–6

    Article  PubMed  CAS  Google Scholar 

  77. Klein C, Sunahara RK, Hudson TY, Heyduk T, Howlett AC (2002) Zinc inhibition of cAMP signaling. J Biol Chem 277:11859–11865

    Article  PubMed  CAS  Google Scholar 

  78. Whipple G, Koohmaraie M (1991) Degradation of myofibrillar proteins by extractable lysosomal enzymes and m-calpain, and the effects of zinc chloride. J Anim Sci 69:4449–4460

    PubMed  CAS  Google Scholar 

  79. Pentyala S, Ruggeri J, Veerraju A, Yu Z, Bhatia A, Desaiah D, Vig P (2010) Microsomal Ca2+ flux modulation as an indicator of heavy metal toxicity. Indian J Exp Biol 48:737–743

    PubMed  CAS  Google Scholar 

  80. Chen Y, Penington NJ (2000) Competition between internal AlF(4)(−) and receptor-mediated stimulation of dorsal raphe neuron G-proteins coupled to calcium current inhibition. J Neurophysiol 83:1273–1282

    PubMed  CAS  Google Scholar 

  81. Chen L, Liu CJ, Tang M, Li A, Hu XW, Du YM, Shen JJ, Lu YL, Heschler J (2005) Action of aluminum on high voltage-dependent calcium current and its modulation by ginkgolide B. Acta Pharmacol Sin 26:539–545

    Article  PubMed  CAS  Google Scholar 

  82. Shafer TJ, Nostrandt AC, Tilson HA, Mundy WR (1994) Mechanisms underlying AlCl3 inhibition of agonist-stimulated inositol phosphate accumulation. Role of calcium, G-proteins, phospholipase C and protein kinase C. Biochem Pharmacol 47:1417–1425

    Article  PubMed  CAS  Google Scholar 

  83. Cochran M, Elliott DC, Brennan P, Chawtur V (1990) Inhibition of protein kinase C activation by low concentrations of aluminium. Clin Chim Acta 194:167–172

    Article  PubMed  CAS  Google Scholar 

  84. Katsuyama H, Saijoh K, Inoue Y, Sumino K (1989) The interaction of aluminium with soluble protein kinase C from mouse brain. Arch Toxicol 63:474–478

    Article  PubMed  CAS  Google Scholar 

  85. Jansen S, Arning J, Beyersmann D (2005) Zinc homeostasis in C6 glioma cells: phospholipase C activity regulates cellular zinc export. Biol Trace Elem Res 108:87–104

    Article  PubMed  CAS  Google Scholar 

  86. Yu SP (2003) Na(+), K(+) -ATPase: the new face of an old player in pathogenesis and apoptotic/hybrid cell death. Biochem Pharmacol 66:1601–1609

    Article  PubMed  CAS  Google Scholar 

  87. Xie Z, Cai T (2003) Na+ K+ ATPase mediated signal transduction: from protein interaction to cellular function. Mol Interv 3:157–168

    Article  PubMed  CAS  Google Scholar 

  88. Lovell MA, Xie C, Markesbery WR (1999) Protection against amyloid beta peptide toxicity by zinc. Brain Res 823:88–95

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Department of Biophysics, Panjab University, Chandigarh, India for providing various facilities during this study. Authors are also grateful to Mr. Damodar Dass, Senior Technician in Department of Biophysics, Panjab University, for providing valuable suggestions during staining procedures. We are grateful to University Grants Commission (UGC), New Delhi, India and Department of Science and Technology (DST-INSPIRE), New Delhi, India for financial support.

Conflict of Interests

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Dhawan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singla, N., Dhawan, D.K. Influence of Zinc on Calcium-Dependent Signal Transduction Pathways During Aluminium-Induced Neurodegeneration. Mol Neurobiol 50, 613–625 (2014). https://doi.org/10.1007/s12035-014-8643-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8643-7

Keywords

Navigation