Skip to main content

Advertisement

Log in

Platelet-Rich Plasma and the Elimination of Neuropathic Pain

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Peripheral neuropathic pain typically results from trauma-induced nociceptive neuron hyperexcitability and their spontaneous ectopic activity. This pain persists until the trauma-induced cascade of events runs its full course, which results in complete tissue repair, including the nociceptive neurons recovering their normal biophysical properties, ceasing to be hyperexcitable, and stopping having spontaneous electrical activity. However, if a wound undergoes no, insufficient, or too much inflammation, or if a wound becomes stuck in an inflammatory state, chronic neuropathic pain persists. Although various drugs and techniques provide temporary relief from chronic neuropathic pain, many have serious side effects, are not effective, none promotes the completion of the wound healing process, and none provides permanent pain relief. This paper examines the hypothesis that chronic neuropathic pain can be permanently eliminated by applying platelet-rich plasma to the site at which the pain originates, thereby triggering the complete cascade of events involved in normal wound repair. Many published papers claim that the clinical application of platelet-rich plasma to painful sites, such as muscle injuries and joints, or to the ends of nerves evoking chronic neuropathic pain, a process often referred to as prolotherapy, eliminates pain initiated at such sites. However, there is no published explanation of a possible mechanism/s by which platelet-rich plasma may accomplish this effect. This paper discusses the normal physiological cascade of trauma-induced events that lead to chronic neuropathic pain and its eventual elimination, techniques being studied to reduce or eliminate neuropathic pain, and how the application of platelet-rich plasma may lead to the permanent elimination of neuropathic pain. It concludes that platelet-rich plasma eliminates neuropathic pain primarily by platelet- and stem cell-released factors initiating the complex cascade of wound healing events, starting with the induction of enhanced inflammation and its complete resolution, followed by all the subsequent steps of tissue remodeling, wound repair and axon regeneration that result in the elimination of neuropathic pain, and also by some of these same factors acting directly on neurons to promote axon regeneration thereby eliminating neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Devor M (2006) Sodium channels and mechanisms of neuropathic pain. J Pain 7:S3–S12

    PubMed  CAS  Google Scholar 

  2. Cummins TR, Sheets PL, Waxman SG (2007) The roles of sodium channels in nociception: implications for mechanisms of pain. Pain 131:243–257

    Article  PubMed  CAS  Google Scholar 

  3. Finnerup NB, Sindrup SH, Jensen TS (2010) The evidence for pharmacological treatment of neuropathic pain. Pain 150:573–581

    Article  PubMed  Google Scholar 

  4. Zieglgansberger W, Berthele A, Tolle TR (2005) Understanding neuropathic pain. CNS Spectr 10:285–297

    Google Scholar 

  5. Shin HS, Oh HY (2012) The effect of platelet-rich plasma on wounds of OLETF rats using expression of matrix metalloproteinase-2 and -9 mRNA. Arch Plast Surg 39:106–112

    Article  PubMed  Google Scholar 

  6. Park SI, Lee HR, Kim S, Ahn MW, Do SH (2012) Time-sequential modulation in expression of growth factors from platelet-rich plasma (PRP) on the chondrocyte cultures. Mol Cell Biochem 361:9–17

    Article  PubMed  CAS  Google Scholar 

  7. Yuan T, Guo SC, Han P, Zhang CQ, Zeng BF (2012) Applications of leukocyte- and platelet-rich plasma (L-PRP) in trauma surgery. Curr Pharm Biotechnol 13:1173–1184

    Article  PubMed  CAS  Google Scholar 

  8. Saucedo JM, Yaffe MA, Berschback JC, Hsu WK, Kalainov DM (2012) Platelet-rich plasma. J Hand Surg Am 37:587–589, quiz 590

    Article  PubMed  Google Scholar 

  9. Sanchez-Gonzalez DJ, Mendez-Bolaina E, Trejo-Bahena NI (2012) Platelet-rich plasma peptides: key for regeneration. Int J Pept 2012:532519

    PubMed  Google Scholar 

  10. Rodrigues SV, Acharya AB, Thakur SL (2012) Platelet-rich plasma. A review. N Y State Dent J 78:26–30

    PubMed  Google Scholar 

  11. Havran WL, Jameson JM (2010) Epidermal T cells and wound healing. J Immunol 184:5423–5428

    Article  PubMed  CAS  Google Scholar 

  12. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11:723–737

    Article  PubMed  CAS  Google Scholar 

  13. Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9:283–289

    Article  PubMed  CAS  Google Scholar 

  14. Mack JA, Feldman RJ, Itano N, Kimata K, Lauer M, Hascall VC, Maytin EV (2012) Enhanced inflammation and accelerated wound closure following tetraphorbol ester application or full-thickness wounding in mice lacking hyaluronan synthases Has1 and Has3. J Invest Dermatol 132:198–207

    Article  PubMed  CAS  Google Scholar 

  15. Santiago-Figueroa JSI, Reyes O, Guzmán H, Hernández R, Kuffler DP (2013) Reducing and eliminating human neuropathic pain following peripheral nerve trauma. J Pain Manag (in press)

  16. Thanasas C, Papadimitriou G, Charalambidis C, Paraskevopoulos I, Papanikolaou A (2011) Platelet-rich plasma versus autologous whole blood for the treatment of chronic lateral elbow epicondylitis: a randomized controlled clinical trial. Am J Sports Med 39:2130–2134

    Article  PubMed  Google Scholar 

  17. Chen L, Dong SW, Liu JP, Tao X, Tang KL, Xu JZ (2012) Synergy of tendon stem cells and platelet-rich plasma in tendon healing. J Orthop Res 30:991–997

    Article  PubMed  CAS  Google Scholar 

  18. Campbell JN, Meyer RA (2006) Mechanisms of neuropathic pain. Neuron 52:77–92

    Article  PubMed  CAS  Google Scholar 

  19. Basbaum AI, Bautista DM, Scherrer G, Julius D (2009) Cellular and molecular mechanisms of pain. Cell 139:267–284

    Article  PubMed  CAS  Google Scholar 

  20. Sandkuhler J (2009) Models and mechanisms of hyperalgesia and allodynia. Physiol Rev 89:707–758

    Article  PubMed  CAS  Google Scholar 

  21. Moalem G, Tracey DJ (2006) Immune and inflammatory mechanisms in neuropathic pain. Brain Res Rev 51:240–264

    Article  PubMed  CAS  Google Scholar 

  22. Shokouhi BN, Wong BZ, Siddiqui S, Lieberman AR, Campbell G, Tohyama K, Anderson PN (2010) Microglial responses around intrinsic CNS neurons are correlated with axonal regeneration. BMC Neurosci 11:13

    Article  PubMed  Google Scholar 

  23. Meltzer NE, Alam DS (2010) Facial paralysis rehabilitation: state of the art. Curr Opin Otolaryngol Head Neck Surg 18:232–237

    Article  PubMed  Google Scholar 

  24. Navarro A, Saldana MT, Perez C, Torrades S, Rejas J (2011) A cost-consequences analysis of the effect of pregabalin in the treatment of peripheral neuropathic pain in routine medical practice in primary care settings. BMC Neurol 11:7

    Article  PubMed  Google Scholar 

  25. van Kollenburg EG, Lavrijsen JC, Verhagen SC, Zuidema SU, Schalkwijk A, Vissers KC (2012) Prevalence, causes, and treatment of neuropathic pain in dutch nursing home residents: a retrospective chart review. J Am Geriatr Soc 60:1418

    Article  PubMed  Google Scholar 

  26. Benninger M, Walner D (2007) Obstructive sleep-disordered breathing in children. Clin Cornerstone 9(Suppl 1):S6–S12

    Article  PubMed  Google Scholar 

  27. Djouhri L, Fang X, Koutsikou S, Lawson SN (2012) Partial nerve injury induces electrophysiological changes in conducting (uninjured) nociceptive and nonnociceptive DRG neurons: possible relationships to aspects of peripheral neuropathic pain and paresthesias. Pain 153:1824–1836

    Article  PubMed  Google Scholar 

  28. Hibner M, Castellanos ME, Drachman D, Balducci J (2012) Repeat operation for treatment of persistent pudendal nerve entrapment after pudendal neurolysis. J Minim Invasive Gynecol 19:325–330

    Article  PubMed  Google Scholar 

  29. Baron R (2006) Mechanisms of disease: neuropathic pain–a clinical perspective. Nat Clin Pract Neurol 2:95–106

    Article  PubMed  Google Scholar 

  30. Fujiwara N, Kobayashi K (2005) Macrophages in inflammation. Curr Drug Targets Inflamm Allergy 4:281–286

    Article  PubMed  CAS  Google Scholar 

  31. Benowitz LI, Popovich PG (2011) Inflammation and axon regeneration. Curr Opin Neurol 24:577–583

    Article  PubMed  CAS  Google Scholar 

  32. Thomson EM, Williams A, Yauk CL, Vincent R (2012) Overexpression of tumor necrosis factor-alpha in the lungs alters immune response, matrix remodeling, and repair and maintenance pathways. Am J Pathol 180:1413–1430

    Article  PubMed  CAS  Google Scholar 

  33. Ashcroft GS, Jeong MJ, Ashworth JJ, Hardman M, Jin W, Moutsopoulos N, Wild T, McCartney-Francis N, Sim D, McGrady G, Song XY, Wahl SM (2012) Tumor necrosis factor-alpha (TNF-alpha) is a therapeutic target for impaired cutaneous wound healing. Wound Repair Regen 20:38–49

    Article  PubMed  Google Scholar 

  34. Scull CM, Hays WD, Fischer TH (2010) Macrophage pro-inflammatory cytokine secretion is enhanced following interaction with autologous platelets. J Inflamm (Lond) 7:53

    Article  CAS  Google Scholar 

  35. Falanga V, Grinnell F, Gilchrest B, Maddox YT, Moshell A (1994) Workshop on the pathogenesis of chronic wounds. J Invest Dermatol 102:125–127

    Article  PubMed  CAS  Google Scholar 

  36. Abdulla FA, Smith PA (2001) Axotomy- and autotomy-induced changes in the excitability of rat dorsal root ganglion neurons. J Neurophysiol 85:630–643

    PubMed  CAS  Google Scholar 

  37. Zheng JH, Walters ET, Song XJ (2007) Dissociation of dorsal root ganglion neurons induces hyperexcitability that is maintained by increased responsiveness to cAMP and cGMP. J Neurophysiol 97:15–25

    Article  PubMed  CAS  Google Scholar 

  38. Ma C, LaMotte RH (2005) Enhanced excitability of dissociated primary sensory neurons after chronic compression of the dorsal root ganglion in the rat. Pain 113:106–112

    Article  PubMed  Google Scholar 

  39. Moalem G, Grafe P, Tracey DJ (2005) Chemical mediators enhance the excitability of unmyelinated sensory axons in normal and injured peripheral nerve of the rat. Neuroscience 134:1399–1411

    Article  PubMed  CAS  Google Scholar 

  40. Sun W, Miao B, Wang XC, Duan JH, Wang WT, Kuang F, Xie RG, Xing JL, Xu H, Song XJ, Luo C, Hu SJ (2012) Reduced conduction failure of the main axon of polymodal nociceptive C-fibres contributes to painful diabetic neuropathy in rats. Brain 135:359–375

    Article  PubMed  Google Scholar 

  41. Lolignier S, Amsalem M, Maingret F, Padilla F, Gabriac M, Chapuy E, Eschalier A, Delmas P, Busserolles J (2011) Nav1.9 channel contributes to mechanical and heat pain hypersensitivity induced by subacute and chronic inflammation. PLoS One 6:e23083

    Article  PubMed  CAS  Google Scholar 

  42. Patel SR, Blackwell T, Redline S, Ancoli-Israel S, Cauley JA, Hillier TA, Lewis CE, Orwoll ES, Stefanick ML, Taylor BC, Yaffe K, Stone KL (2008) The association between sleep duration and obesity in older adults. Int J Obes 32:1825–1834

    Article  Google Scholar 

  43. Spiegel K (2008) Sleep loss as a risk factor for obesity and diabetes. Int J Pediatr Obes IJPO Off J Int Assoc Study Obes 3(Suppl 2):27–28

    Article  Google Scholar 

  44. Obata K, Yamanaka H, Fukuoka T, Yi D, Tokunaga A, Hashimoto N, Yoshikawa H, Noguchi K (2003) Contribution of injured and uninjured dorsal root ganglion neurons to pain behavior and the changes in gene expression following chronic constriction injury of the sciatic nerve in rats. Pain 101:65–77

    Article  PubMed  CAS  Google Scholar 

  45. Decosterd I, Ji RR, Abdi S, Tate S, Woolf CJ (2002) The pattern of expression of the voltage-gated sodium channels Na(v)1.8 and Na(v)1.9 does not change in uninjured primary sensory neurons in experimental neuropathic pain models. Pain 96:269–277

    Article  PubMed  CAS  Google Scholar 

  46. Del Valle L, Schwartzman RJ, Alexander G (2009) Spinal cord histopathological alterations in a patient with longstanding complex regional pain syndrome. Brain Behav Immun 23:85–91

    Article  PubMed  Google Scholar 

  47. Yuan LP, Bo Y, Ming G, Zhou QL (2012) Expression of acid-sensing ion channels of gastric mucosa from patients with Henoch–Schonlein purpura. J Pediatr Gastroenterol Nutr 54:561–563

    Article  PubMed  CAS  Google Scholar 

  48. Etulain J, Negrotto S, Carestia A, Pozner RG, Romaniuk MA, D'Atri LP, Klement GL, Schattner M (2012) Acidosis downregulates platelet haemostatic functions and promotes neutrophil proinflammatory responses mediated by platelets. Thromb Haemost 107:99–110

    Article  PubMed  CAS  Google Scholar 

  49. Liu X, He L, Dinger B, Fidone SJ (2011) Chronic hypoxia-induced acid-sensitive ion channel expression in chemoafferent neurons contributes to chemoreceptor hypersensitivity. Am J Physiol Lung Cell Mol Physiol 301:L985–L992

    Article  PubMed  CAS  Google Scholar 

  50. Huang CW, Tzeng JN, Chen YJ, Tsai WF, Chen CC, Sun WH (2007) Nociceptors of dorsal root ganglion express proton-sensing G-protein-coupled receptors. Mol Cell Neurosci 36:195–210

    Article  PubMed  CAS  Google Scholar 

  51. Askwith CC, Wemmie JA, Price MP, Rokhlina T, Welsh MJ (2004) Acid-sensing ion channel 2 (ASIC2) modulates ASIC1 H+-activated currents in hippocampal neurons. J Biol Chem 279:18296–18305

    Article  PubMed  CAS  Google Scholar 

  52. Andreev YA, Vassilevski AA, Kozlov SA (2012) Molecules to selectively target receptors for treatment of pain and neurogenic inflammation. Recent Patents Inflamm Allergy Drug Discov 6:35–45

    Article  CAS  Google Scholar 

  53. Mamet J, Baron A, Lazdunski M, Voilley N (2002) Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of acid-sensing ion channels. J Neurosci Off J Soc Neurosci 22:10662–10670

    CAS  Google Scholar 

  54. Juchem G, Weiss DR, Knott M, Senftl A, Forch S, Fischlein T, Kreuzer E, Reichart B, Laufer S, Nees S (2012) Regulation of coronary venular barrier function by blood borne inflammatory mediators and pharmacological tools: insights from novel microvascular wall models. Am J Physiol Heart Circ Physiol 302:H567–H581

    Article  PubMed  CAS  Google Scholar 

  55. Cloutier N, Pare A, Farndale RW, Schumacher HR, Nigrovic PA, Lacroix S, Boilard E (2012) Platelets can enhance vascular permeability. Blood 120:1334–1343

    Article  PubMed  CAS  Google Scholar 

  56. Kurita J, Miyamoto M, Ishii Y, Aoyama J, Takagi G, Naito Z, Tabata Y, Ochi M, Shimizu K (2011) Enhanced vascularization by controlled release of platelet-rich plasma impregnated in biodegradable gelatin hydrogel. Ann Thorac Surg 92:837–844, discussion 844

    Article  PubMed  Google Scholar 

  57. Roy S, Driggs J, Elgharably H, Biswas S, Findley M, Khanna S, Gnyawali U, Bergdall VK, Sen CK (2011) Platelet-rich fibrin matrix improves wound angiogenesis via inducing endothelial cell proliferation. Wound Repair Regen Off Publ Wound Healing Soc Eur Tissue Repair Soc 19:753–766

    Article  Google Scholar 

  58. Harrison S, Vavken P, Kevy S, Jacobson M, Zurakowski D, Murray MM (2011) Platelet activation by collagen provides sustained release of anabolic cytokines. Am J Sports Med 39:729–734

    Article  PubMed  Google Scholar 

  59. Ranzato E, Martinotti S, Volante A, Mazzucco L, Burlando B (2011) Platelet lysate modulates MMP-2 and MMP-9 expression, matrix deposition and cell-to-matrix adhesion in keratinocytes and fibroblasts. Exp Dermatol 20:308–313

    Article  PubMed  CAS  Google Scholar 

  60. Nadeau S, Filali M, Zhang J, Kerr BJ, Rivest S, Soulet D, Iwakura Y, de Rivero Vaccari JP, Keane RW, Lacroix S (2011) Functional recovery after peripheral nerve injury is dependent on the pro-inflammatory cytokines IL-1beta and TNF: implications for neuropathic pain. J Neurosci Off J Soc Neurosci 31:12533–12542

    Article  CAS  Google Scholar 

  61. Hochstrasser T, Ehrlich D, Sperner-Unterweger B, Humpel C (2013) Antidepressants and anti-inflammatory drugs differentially reduce the release of NGF and BDNF from rat platelets. Pharmacopsychiatry 46:29–34

    PubMed  CAS  Google Scholar 

  62. Hamza M, Wang XM, Adam A, Brahim JS, Rowan JS, Carmona GN, Dionne RA (2010) Kinin B1 receptors contributes to acute pain following minor surgery in humans. Mol Pain 6:12

    Article  PubMed  CAS  Google Scholar 

  63. Sakamoto H, Ooshima A (1985) Activation of neutrophil phagocytosis of complement coated and IgG coated sheep erythrocytes by platelet release products. Br J Haematol 60:173–181

    Article  PubMed  CAS  Google Scholar 

  64. Pezet S, McMahon SB (2006) Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci 29:507–538

    Article  PubMed  CAS  Google Scholar 

  65. Cruz Duarte P, St-Jacques B, Ma W (2012) Prostaglandin E2 contributes to the synthesis of brain-derived neurotrophic factor in primary sensory neuron in ganglion explant cultures and in a neuropathic pain model. Exp Neurol 234:466–481

    Article  PubMed  CAS  Google Scholar 

  66. Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, Shrayer D, Carson P (2007) Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 13:1299–1312

    Article  PubMed  CAS  Google Scholar 

  67. Wu Y, Wang J, Scott PG, Tredget EE (2007) Bone marrow-derived stem cells in wound healing: a review. Wound Repair Regen 15(Suppl 1):S18–S26

    Article  PubMed  Google Scholar 

  68. Yang CC, Shih YH, Ko MH, Hsu SY, Cheng H, Fu YS (2008) Transplantation of human umbilical mesenchymal stem cells from Wharton's jelly after complete transection of the rat spinal cord. PLoS One 3:e3336

    Article  PubMed  CAS  Google Scholar 

  69. Goel RK, Suri V, Suri A, Sarkar C, Mohanty S, Sharma MC, Yadav PK, Srivastava A (2009) Effect of bone marrow-derived mononuclear cells on nerve regeneration in the transection model of the rat sciatic nerve. J Clin Neurosci 16:1211–1217

    Article  PubMed  Google Scholar 

  70. Wang Y, Jia H, Li WY, Tong XJ, Liu GB, Kang SW (2012) Synergistic effects of bone mesenchymal stem cells and chondroitinase abc on nerve regeneration after acellular nerve allograft in rats. Cell Mol Neurobiol 32:361–371

    Article  PubMed  CAS  Google Scholar 

  71. Zwezdaryk KJ, Coffelt SB, Figueroa YG, Liu J, Phinney DG, LaMarca HL, Florez L, Morris CB, Hoyle GW, Scandurro AB (2007) Erythropoietin, a hypoxia-regulated factor, elicits a pro-angiogenic program in human mesenchymal stem cells. Exp Hematol 35:640–652

    Article  PubMed  CAS  Google Scholar 

  72. Bueno L, Fioramonti J (1999) Effects of inflammatory mediators on gut sensitivity. Can J Gastroenterol 13(Suppl A):42A–46A

    PubMed  Google Scholar 

  73. Selak MA (1994) Neutrophil-platelet interactions in inflammation. Receptor 4:3–7

    PubMed  CAS  Google Scholar 

  74. Lam FW, Burns AR, Smith CW, Rumbaut RE (2011) Platelets enhance neutrophil transendothelial migration via P-selectin glycoprotein ligand-1. Am J Physiol Heart Circ Physiol 300:H468–H475

    Article  PubMed  CAS  Google Scholar 

  75. Theoharides TC, Cochrane DE (2004) Critical role of mast cells in inflammatory diseases and the effect of acute stress. J Neuroimmunol 146:1–12

    Article  PubMed  CAS  Google Scholar 

  76. Egozi EI, Ferreira AM, Burns AL, Gamelli RL, Dipietro LA (2003) Mast cells modulate the inflammatory but not the proliferative response in healing wounds. Wound Repair Regen 11:46–54

    Article  PubMed  Google Scholar 

  77. Hoffmeister C, Trevisan G, Rossato MF, de Oliveira SM, Gomez MV, Ferreira J (2011) Role of TRPV1 in nociception and edema induced by monosodium urate crystals in rats. Pain 152:1777–1788

    Article  PubMed  CAS  Google Scholar 

  78. Sommer C (2004) Serotonin in pain and analgesia: actions in the periphery. Mol Neurobiol 30:117–125

    Article  PubMed  CAS  Google Scholar 

  79. Loyd DR, Weiss G, Henry MA, Hargreaves KM (2011) Serotonin increases the functional activity of capsaicin-sensitive rat trigeminal nociceptors via peripheral serotonin receptors. Pain 152:2267–2276

    Article  PubMed  CAS  Google Scholar 

  80. Galli SJ, Wedemeyer J, Tsai M (2002) Analyzing the roles of mast cells and basophils in host defense and other biological responses. Int J Hematol 75:363–369

    Article  PubMed  CAS  Google Scholar 

  81. Yong T, Bebo BF Jr, Sapatino BV, Welsh CJ, Orr EL, Linthicum DS (1994) Histamine-induced microvascular leakage in pial venules: differences between the SJL/J and BALB/c inbred strains of mice. J Neurotrauma 11:161–171

    Article  PubMed  CAS  Google Scholar 

  82. Heitsch H (2000) Bradykinin B2 receptor as a potential therapeutic target. Drug News Perspect 13:213–225

    PubMed  CAS  Google Scholar 

  83. Liu B, Linley JE, Du X, Zhang X, Ooi L, Zhang H, Gamper N (2010) The acute nociceptive signals induced by bradykinin in rat sensory neurons are mediated by inhibition of M-type K+ channels and activation of Ca2+-activated Cl− channels. J Clin Invest 120:1240–1252

    Article  PubMed  CAS  Google Scholar 

  84. Steranka LR, Manning DC, DeHaas CJ, Ferkany JW, Borosky SA, Connor JR, Vavrek RJ, Stewart JM, Snyder SH (1988) Bradykinin as a pain mediator: receptors are localized to sensory neurons, and antagonists have analgesic actions. Proc Natl Acad Sci U S A 85:3245–3249

    Article  PubMed  CAS  Google Scholar 

  85. Linley JE, Rose K, Patil M, Robertson B, Akopian AN, Gamper N (2008) Inhibition of M current in sensory neurons by exogenous proteases: a signaling pathway mediating inflammatory nociception. J Neurosci 28:11240–11249

    Article  PubMed  CAS  Google Scholar 

  86. Zhao P, Waxman SG, Hains BC (2006) Sodium channel expression in the ventral posterolateral nucleus of the thalamus after peripheral nerve injury. Mol Pain 2:27

    Article  PubMed  CAS  Google Scholar 

  87. Cao XH, Chen SR, Li L, Pan HL (2012) Nerve injury increases brain-derived neurotrophic factor levels to suppress BK channel activity in primary sensory neurons. J Neurochem 121:944–953

    Article  PubMed  CAS  Google Scholar 

  88. Hakim AW, Dong X, Cairns BE (2011) TNFalpha mechanically sensitizes masseter muscle nociceptors by increasing prostaglandin E2 levels. J Neurophysiol 105:154–161

    Article  PubMed  CAS  Google Scholar 

  89. Zoga V, Kawano T, Liang MY, Bienengraeber M, Weihrauch D, McCallum B, Gemes G, Hogan Q, Sarantopoulos C (2010) KATP channel subunits in rat dorsal root ganglia: alterations by painful axotomy. Mol Pain 6:6

    Article  PubMed  CAS  Google Scholar 

  90. Ungless MA, Gasull X, Walters ET (2002) Long-term alteration of S-type potassium current and passive membrane properties in aplysia sensory neurons following axotomy. J Neurophysiol 87:2408–2420

    PubMed  CAS  Google Scholar 

  91. Rasband MN, Park EW, Vanderah TW, Lai J, Porreca F, Trimmer JS (2001) Distinct potassium channels on pain-sensing neurons. Proc Natl Acad Sci U S A 98:13373–13378

    Article  PubMed  CAS  Google Scholar 

  92. Goldstein SA, Bockenhauer D, O'Kelly I, Zilberberg N (2001) Potassium leak channels and the KCNK family of two-P-domain subunits. Nat Rev Neurosci 2:175–184

    Article  PubMed  CAS  Google Scholar 

  93. Ambron RT, Walters ET (1996) Priming events and retrograde injury signals. A new perspective on the cellular and molecular biology of nerve regeneration. Mol Neurobiol 13:61–79

    Article  PubMed  CAS  Google Scholar 

  94. Zimmermann M, Herdegen T (1996) Plasticity of the nervous system at the systematic, cellular and molecular levels: a mechanism of chronic pain and hyperalgesia. Prog Brain Res 110:233–259

    Article  PubMed  CAS  Google Scholar 

  95. LaMotte RH, Zhang JM, Petersen M (1996) Alterations in the functional properties of dorsal root ganglion cells with unmyelinated axons after a chronic nerve constriction in the rat. Prog Brain Res 110:105–111

    Article  PubMed  CAS  Google Scholar 

  96. Shen C, de Hertogh G, Bullens DM, Van Assche G, Geboes K, Rutgeerts P, Ceuppens JL (2007) Remission-inducing effect of anti-TNF monoclonal antibody in TNBS colitis: mechanisms beyond neutralization? Inflamm Bowel Dis 13:308–316

    Article  PubMed  Google Scholar 

  97. Khan SB, Cook HT, Bhangal G, Smith J, Tam FW, Pusey CD (2005) Antibody blockade of TNF-alpha reduces inflammation and scarring in experimental crescentic glomerulonephritis. Kidney Int 67:1812–1820

    Article  PubMed  CAS  Google Scholar 

  98. Obata K, Noguchi K (2006) BDNF in sensory neurons and chronic pain. Neurosci Res 55:1–10

    Article  PubMed  CAS  Google Scholar 

  99. Watanabe T, Ito T, Inoue G, Ohtori S, Kitajo K, Doya H, Takahashi K, Yamashita T (2008) The p75 receptor is associated with inflammatory thermal hypersensitivity. J Neurosci Res 86:3566–3574

    Article  PubMed  CAS  Google Scholar 

  100. Miura M, Sasaki M, Mizukoshi K, Shibasaki M, Izumi Y, Shimosato G, Amaya F (2011) Peripheral sensitization caused by insulin-like growth factor 1 contributes to pain hypersensitivity after tissue injury. Pain 152:888–895

    Article  PubMed  CAS  Google Scholar 

  101. Huang J, Fan Y, Jia Y, Hong Y (2011) Antagonism of 5-HT(2A) receptors inhibits the expression of pronociceptive mediator and enhances endogenous opioid mechanism in carrageenan-induced inflammation in rats. Eur J Pharmacol 654:33–41

    Article  PubMed  CAS  Google Scholar 

  102. Bardin L (2011) The complex role of serotonin and 5-HT receptors in chronic pain. Behav Pharmacol 22:390–404

    Article  PubMed  CAS  Google Scholar 

  103. Zheng W, Ouyang H, Zheng X, Liu S, Mata M, Fink DJ, Hao S (2011) Glial TNFalpha in the spinal cord regulates neuropathic pain induced by HIV gp120 application in rats. Mol Pain 7:40

    Article  PubMed  CAS  Google Scholar 

  104. Steenfos HH (1994) Growth factors and wound healing. Scand J Plast Reconstr Surg Hand Surg 28:95–105

    Article  PubMed  CAS  Google Scholar 

  105. Liou JT, Liu FC, Mao CC, Lai YS, Day YJ (2011) Inflammation confers dual effects on nociceptive processing in chronic neuropathic pain model. Anesthesiology 114:660–672

    Article  PubMed  Google Scholar 

  106. McQuibban GA, Gong JH, Wong JP, Wallace JL, Clark-Lewis I, Overall CM (2002) Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood 100:1160–1167

    PubMed  CAS  Google Scholar 

  107. Dinarello CA (2000) Proinflammatory cytokines. Chest 118:503–508

    Article  PubMed  CAS  Google Scholar 

  108. Wuertz K, Quero L, Sekiguchi M, Klawitter M, Nerlich A, Konno S, Kikuchi S, Boos N (2011) The red wine polyphenol resveratrol shows promising potential for the treatment of nucleus pulposus-mediated pain in vitro and in vivo. Spine 36:E1373–E1384

    Article  PubMed  Google Scholar 

  109. Milligan ED, Sloane EM, Langer SJ, Cruz PE, Chacur M, Spataro L, Wieseler-Frank J, Hammack SE, Maier SF, Flotte TR, Forsayeth JR, Leinwand LA, Chavez R, Watkins LR (2005) Controlling neuropathic pain by adeno-associated virus driven production of the anti-inflammatory cytokine, interleukin-10. Mol Pain 1:9

    Article  PubMed  CAS  Google Scholar 

  110. Sloane EM, Soderquist RG, Maier SF, Mahoney MJ, Watkins LR, Milligan ED (2009) Long-term control of neuropathic pain in a non-viral gene therapy paradigm. Gene Ther 16:470–475

    Article  PubMed  CAS  Google Scholar 

  111. Sato Y, Ohshima T, Kondo T (1999) Regulatory role of endogenous interleukin-10 in cutaneous inflammatory response of murine wound healing. Biochem Biophys Res Commun 265:194–199

    Article  PubMed  CAS  Google Scholar 

  112. Gum RJ, Wakefield B, Jarvis MF (2012) P2X receptor antagonists for pain management: examination of binding and physicochemical properties. Purinergic Signal 8:41–56

    Article  PubMed  CAS  Google Scholar 

  113. McGaraughty S, Chu KL, Namovic MT, Donnelly-Roberts DL, Harris RR, Zhang XF, Shieh CC, Wismer CT, Zhu CZ, Gauvin DM, Fabiyi AC, Honore P, Gregg RJ, Kort ME, Nelson DW, Carroll WA, Marsh K, Faltynek CR, Jarvis MF (2007) P2X7-related modulation of pathological nociception in rats. Neuroscience 146:1817–1828

    Article  PubMed  CAS  Google Scholar 

  114. Honore P, Donnelly-Roberts D, Namovic M, Zhong C, Wade C, Chandran P, Zhu C, Carroll W, Perez-Medrano A, Iwakura Y, Jarvis MF (2009) The antihyperalgesic activity of a selective P2X7 receptor antagonist, A-839977, is lost in IL-1alphabeta knockout mice. Behav Brain Res 204:77–81

    Article  PubMed  CAS  Google Scholar 

  115. Ford AP (2012) In pursuit of P2X3 antagonists: novel therapeutics for chronic pain and afferent sensitization. Purinergic Signal 8:3–26

    Article  PubMed  CAS  Google Scholar 

  116. Vyklicky L, Lyfenko A, Kuffler DP, Vlachova V (2003) Vanilloid receptor TRPV1 is not activated by vanilloids applied intracellularly. Neuroreport 14:1061–1065

    Article  PubMed  CAS  Google Scholar 

  117. Honore P, Wismer CT, Mikusa JP, Zhu CZ, Zhong C, Gauvin DM, Gomtsyan A, El Kouhen R, Lee CH, Marsh K, Sullivan JP, Faltynek CR, Jarvis MF (2013) A-425619, a novel TRPV1 receptor antagonist, relieves pathophysiological pain associated with inflammation and tissue injury in rats. J Pharmacol Exp Ther (in press)

  118. Valenzano KJ, Sun Q (2004) Current perspectives on the therapeutic utility of VR1 antagonists. Curr Med Chem 11:3185–3202

    Article  PubMed  CAS  Google Scholar 

  119. Li H, Xie W, Strong JA, Zhang JM (2007) Systemic antiinflammatory corticosteroid reduces mechanical pain behavior, sympathetic sprouting, and elevation of proinflammatory cytokines in a rat model of neuropathic pain. Anesthesiology 107:469–477

    Article  PubMed  CAS  Google Scholar 

  120. Xiao HS, Huang QH, Zhang FX, Bao L, Lu YJ, Guo C, Yang L, Huang WJ, Fu G, Xu SH, Cheng XP, Yan Q, Zhu ZD, Zhang X, Chen Z, Han ZG (2002) Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc Natl Acad Sci U S A 99:8360–8365

    Article  PubMed  CAS  Google Scholar 

  121. Bannwarth B, Kostine M, Shipley E (2012) Nonspecific low back pain: assessment of available medications. Joint Bone Spine Rev Rhum 79:134–136

    Article  Google Scholar 

  122. Semenov FV, Iakobashvili I (2007) [Usage of platelet-enriched plasma as hemostatic and analgenic medication in tonsillectomy]. Vestnik otorinolaringologii. 48–50

  123. El-Sharkawy H, Kantarci A, Deady J, Hasturk H, Liu H, Alshahat M, Van Dyke TE (2007) Platelet-rich plasma: growth factors and pro- and anti-inflammatory properties. J Periodontol 78:661–669

    Article  PubMed  CAS  Google Scholar 

  124. Boswell SG, Cole BJ, Sundman EA, Karas V, Fortier LA (2012) Platelet-rich plasma: a milieu of bioactive factors. Arthroscopy 28:429–439

    Article  PubMed  Google Scholar 

  125. Bond M, Fabunmi RP, Baker AH, Newby AC (1998) Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-kappa B. FEBS Lett 435:29–34

    Article  PubMed  CAS  Google Scholar 

  126. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16:585–601

    Article  PubMed  Google Scholar 

  127. Chen X, Thibeault SL (2010) Role of tumor necrosis factor-alpha in wound repair in human vocal fold fibroblasts. Laryngoscope 120:1819–1825

    Article  PubMed  CAS  Google Scholar 

  128. Bendinelli P, Matteucci E, Dogliotti G, Corsi MM, Banfi G, Maroni P, Desiderio MA (2010) Molecular basis of anti-inflammatory action of platelet-rich plasma on human chondrocytes: mechanisms of NF-kappaB inhibition via HGF. J Cell Physiol 225:757–766

    Article  PubMed  CAS  Google Scholar 

  129. Kanno T, Takahashi T, Tsujisawa T, Ariyoshi W, Nishihara T (2005) Platelet-rich plasma enhances human osteoblast-like cell proliferation and differentiation. J Oral Maxillofac Surg 63:362–369

    Article  PubMed  Google Scholar 

  130. Smith PA (2004) Neuropathic pain: drug targets for current and future interventions. Drug News Perspect 17:5–17

    Article  PubMed  CAS  Google Scholar 

  131. Pullar S, Palmer AM (2003) Pharmacotherapy for neuropathic pain: progress and prospects. Drug News Perspect 16:622–630

    PubMed  Google Scholar 

  132. Hurley RW, Cohen SP, Williams KA, Rowlingson AJ, Wu CL (2006) The analgesic effects of perioperative gabapentin on postoperative pain: a meta-analysis. Reg Anesth Pain Med 31:237–247

    PubMed  CAS  Google Scholar 

  133. Obata H, Saito S, Koizuka S, Nishikawa K, Goto F (2005) The monoamine-mediated antiallodynic effects of intrathecally administered milnacipran, a serotonin noradrenaline reuptake inhibitor, in a rat model of neuropathic pain. Anesth Analg 100:1406–1410, table of contents

    Article  PubMed  CAS  Google Scholar 

  134. Lee WP, Lin LW, Yeh SH, Liu RH, Tseng CF (2002) Correlations among serum calcium, vitamin D and parathyroid hormone levels in the elderly in southern Taiwan. J Nurs Res JNR 10:65–72

    Article  Google Scholar 

  135. Martinez JA, Kasamatsu M, Rosales-Hernandez A, Hanson LR, Frey WH, Toth CC (2012) Comparison of central versus peripheral delivery of pregabalin in neuropathic pain states. Mol Pain 8:3

    Article  PubMed  CAS  Google Scholar 

  136. Mirza R, DiPietro LA, Koh TJ (2009) Selective and specific macrophage ablation is detrimental to wound healing in mice. Am J Pathol 175:2454–2462

    Article  PubMed  CAS  Google Scholar 

  137. Koh TJ, DiPietro LA (2011) Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med 13:e23

    Article  PubMed  Google Scholar 

  138. Leibovich SJ, Ross R (1975) The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. Am J Pathol 78:71–100

    PubMed  CAS  Google Scholar 

  139. Li Y, Irwin N, Yin Y, Lanser M, Benowitz LI (2003) Axon regeneration in goldfish and rat retinal ganglion cells: differential responsiveness to carbohydrates and cAMP. J Neurosci 23:7830–7838

    PubMed  CAS  Google Scholar 

  140. Yin Y, Henzl MT, Lorber B, Nakazawa T, Thomas TT, Jiang F, Langer R, Benowitz LI (2006) Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat Neurosci 9:843–852

    Article  PubMed  CAS  Google Scholar 

  141. Kim CF, Moalem-Taylor G (2011) Interleukin-17 contributes to neuroinflammation and neuropathic pain following peripheral nerve injury in mice. J Pain Off J Am Pain Soc 12:370–383

    Article  CAS  Google Scholar 

  142. Benninger M, Walner D (2007) Coblation: improving outcomes for children following adenotonsillectomy. Clin Cornerstone 9(Suppl 1):S13–S23

    Article  PubMed  Google Scholar 

  143. Honore P, Kage K, Mikusa J, Watt AT, Johnston JF, Wyatt JR, Faltynek CR, Jarvis MF, Lynch K (2002) Analgesic profile of intrathecal P2X(3) antisense oligonucleotide treatment in chronic inflammatory and neuropathic pain states in rats. Pain 99:11–19

    Article  PubMed  CAS  Google Scholar 

  144. Yanagidate F, Strichartz GR (2007) Local anesthetics. Handb Exp Pharmacol 95–127

  145. Fan N, Donnelly DF, LaMotte RH (2011) Chronic compression of mouse dorsal root ganglion alters voltage-gated sodium and potassium currents in medium-sized dorsal root ganglion neurons. J Neurophysiol 106:3067–3072

    Article  PubMed  CAS  Google Scholar 

  146. Xie W, Strong JA, Zhang JM (2009) Early blockade of injured primary sensory afferents reduces glial cell activation in two rat neuropathic pain models. Neuroscience 160:847–857

    Article  PubMed  CAS  Google Scholar 

  147. Stummann TC, Salvati P, Fariello RG, Faravelli L (2005) The anti-nociceptive agent ralfinamide inhibits tetrodotoxin-resistant and tetrodotoxin-sensitive Na+ currents in dorsal root ganglion neurons. Eur J Pharmacol 510:197–208

    Article  PubMed  CAS  Google Scholar 

  148. Novak KR, Nardelli P, Cope TC, Filatov G, Glass JD, Khan J, Rich MM (2009) Inactivation of sodium channels underlies reversible neuropathy during critical illness in rats. J Clin Invest 119:1150–1158

    Article  PubMed  CAS  Google Scholar 

  149. Erdogan C, Yucel M, Akgun H, Kaskc T, Semai Bek V, Gokcil Z (2012) Effects of topiramate on peripheral nerve excitability. J Clin Neurophysiol Off Publ Am Electroencephalographic Soc 29:268–270

    Article  Google Scholar 

  150. Luyster FS, Buysse DJ, Strollo PJ Jr (2010) Comorbid insomnia and obstructive sleep apnea: challenges for clinical practice and research. J Clin Sleep Med JCSM Off Publ Am Acad Sleep Med 6:196–204

    Google Scholar 

  151. de Leon-Casasola OA (2008) Current developments in opioid therapy for management of cancer pain. Clin J Pain 24(Suppl 10):S3–S7

    Article  PubMed  Google Scholar 

  152. Hans GH, Robert DN, Van Maldeghem KN (2008) Treatment of an acute severe central neuropathic pain syndrome by topical application of lidocaine 5 % patch: a case report. Spinal Cord 46:311–313

    Article  PubMed  CAS  Google Scholar 

  153. Hobo S, Hayashida K, Eisenach JC (2012) Oxytocin inhibits the membrane depolarization-induced increase in intracellular calcium in capsaicin sensitive sensory neurons: a peripheral mechanism of analgesic action. Anesth Analg 114:442–449

    Article  PubMed  CAS  Google Scholar 

  154. Kloth LC (2005) Electrical stimulation for wound healing: a review of evidence from in vitro studies, animal experiments, and clinical trials. Int J Low Extrem Wounds 4:23–44

    Article  PubMed  Google Scholar 

  155. Franek A, Kostur R, Polak A, Taradaj J, Szlachta Z, Blaszczak E, Dolibog P, Koczy B, Kucio C (2012) Using high-voltage electrical stimulation in the treatment of recalcitrant pressure ulcers: results of a randomized, controlled clinical study. Ostomy Wound Manage 58:30–44

    PubMed  Google Scholar 

  156. Messerli MA, Graham DM (2011) Extracellular electrical fields direct wound healing and regeneration. Biol Bull 221:79–92

    PubMed  CAS  Google Scholar 

  157. Jaffe LF, Vanable JW Jr (1984) Electric fields and wound healing. Clin Dermatol 2:34–44

    Article  PubMed  CAS  Google Scholar 

  158. Jankovic A, Binic I (2008) Frequency rhythmic electrical modulation system in the treatment of chronic painful leg ulcers. Arch Dermatol Res 300:377–383

    Article  PubMed  Google Scholar 

  159. Lefaucheur JP, Ayache SS, Sorel M, Farhat WH, Zouari HG, Ciampi de Andrade D, Ahdab R, Menard-Lefaucheur I, Brugieres P, Goujon C (2012) Analgesic effects of repetitive transcranial magnetic stimulation of the motor cortex in neuropathic pain: Influence of theta burst stimulation priming. Eur J Pain 16:1403–1413

    Article  PubMed  Google Scholar 

  160. Knotkova H, Cruciani RA (2010) Non-invasive transcranial direct current stimulation for the study and treatment of neuropathic pain. Methods Mol Biol 617:505–515

    Article  PubMed  Google Scholar 

  161. Murphy RJ, Carr AJ (2010) Shoulder pain. Clin Evid 2010

  162. Morykwas MJ, Simpson J, Punger K, Argenta A, Kremers L, Argenta J (2006) Vacuum-assisted closure: state of basic research and physiologic foundation. Plast Reconstr Surg 117:121S–126S

    Article  PubMed  CAS  Google Scholar 

  163. Ubbink DT, Westerbos SJ, Nelson EA, Vermeulen H (2008) A systematic review of topical negative pressure therapy for acute and chronic wounds. Br J Surg 95:685–692

    Article  PubMed  CAS  Google Scholar 

  164. Bishop AJ, Mudge E (2012) A retrospective study of diabetic foot ulcers treated with hyperbaric oxygen therapy. Int Wound J 9–665–676

  165. Nazario J, Kuffler DP (2011) Hyperbaric oxygen therapy and promoting neurological recovery following nerve trauma. Undersea Hyperb Med 38:345–366

    PubMed  CAS  Google Scholar 

  166. Kuffler DP (2011) The role of hyperbaric oxygen therapy in enhancing the rate of wound healing with a focus on axon regeneration. P R Health Sci J 30:35–42

    PubMed  Google Scholar 

  167. Kranke P, Bennett MH, Martyn-St James M, Schnabel A, Debus SE (2012) Hyperbaric oxygen therapy for chronic wounds. Cochrane Database Syst Rev 4, CD004123

  168. Londahl M (2012) Hyperbaric oxygen therapy as treatment of diabetic foot ulcers. Diabetes Metab Res Rev 28(Suppl 1):78–84

    Article  PubMed  Google Scholar 

  169. Savernini A, Savernini N, de Amaral FA, Romero TR, Duarte ID, de Castro MS (2012) Assay of therapeutic ultrasound induced-antinociception in experimental trigeminal neuropathic pain. J Neurosci Res 90:1639–1645

    Article  PubMed  CAS  Google Scholar 

  170. Doan N, Reher P, Meghji S, Harris M (1999) In vitro effects of therapeutic ultrasound on cell proliferation, protein synthesis, and cytokine production by human fibroblasts, osteoblasts, and monocytes. J Oral Maxillofac Surg 57:409–419, discussion 420

    Article  PubMed  CAS  Google Scholar 

  171. Villas C, Florez B, Alfonso M (2008) Neurectomy versus neurolysis for Morton's neuroma. Foot Ankle Int 29:578–580

    Article  PubMed  Google Scholar 

  172. Chen CK, Phui VE, Saman MA (2012) Alcohol neurolysis of lateral femoral cutaneous nerve for recurrent meralgia paresthetica. Agri 24:42–44

    Article  PubMed  Google Scholar 

  173. Teixeira MJ, Fonoff ET, Montenegro MC (2007) Dorsal root entry zone lesions for treatment of pain-related to radiation-induced plexopathy. Spine 32:E316–E319

    Article  PubMed  Google Scholar 

  174. Nikolajsen L, Black JA, Kroner K, Jensen TS, Waxman SG (2010) Neuroma removal for neuropathic pain: efficacy and predictive value of lidocaine infusion. Clin J Pain 26:788–793

    Article  PubMed  Google Scholar 

  175. Black JA, Nikolajsen L, Kroner K, Jensen TS, Waxman SG (2008) Multiple sodium channel isoforms and mitogen-activated protein kinases are present in painful human neuromas. Ann Neurol 64:644–653

    Article  PubMed  Google Scholar 

  176. Guse DM, Moran SL (2013) Outcomes of the surgical treatment of peripheral neuromas of the hand and forearm: a 25-year comparative outcome study. Ann Plast Surg (in press)

  177. Williams EH, Williams CG, Rosson GD, Heitmiller RF, Dellon AL (2008) Neurectomy for treatment of intercostal neuralgia. Ann Thorac Surg 85:1766–1770

    Article  PubMed  Google Scholar 

  178. Lohrer H, Nauck T, Konerding MA (2012) Nerve entrapment after hamstring injury. Clin J Sport Med 22:443–445

    Article  PubMed  Google Scholar 

  179. Tyner TR, Parks N, Faria S, Simons M, Stapp B, Curtis B, Sian K, Yamaguchi KT (2007) Effects of collagen nerve guide on neuroma formation and neuropathic pain in a rat model. Am J Surg 193:e1–e6

    Article  PubMed  Google Scholar 

  180. Santiago-Figueroa J, Kuffler DP (2009) Reducing and eliminating neuropathic pain. P R Health Sci J 28:289–300

    PubMed  Google Scholar 

  181. Koch H, Haas F, Hubmer M, Rappl T, Scharnagl E (2003) Treatment of painful neuroma by resection and nerve stump transplantation into a vein. Ann Plast Surg 51:45–50

    Article  PubMed  Google Scholar 

  182. Vaienti L, Merle M, Villani F, Gazzola R (2010) Fat grafting according to Coleman for the treatment of radial nerve neuromas. Plast Reconstr Surg 126:676–678

    Article  PubMed  CAS  Google Scholar 

  183. Vaienti L, Gazzola R, Villani F, Parodi PC (2012) Perineural fat grafting in the treatment of painful neuromas. Tech Hand Up Extrem Surg 16:52–55

    Article  PubMed  Google Scholar 

  184. Elliot D, Lloyd M, Hazari A, Sauerland S, Anand P (2010) Relief of the pain of neuromas-in-continuity and scarred median and ulnar nerves in the distal forearm and wrist by neurolysis, wrapping in vascularized forearm fascial flaps and adjunctive procedures. J Hand Surg Eur Vol 35:575–582

    Article  PubMed  CAS  Google Scholar 

  185. Knoferle J, Ramljak S, Koch JC, Tonges L, Asif AR, Michel U, Wouters FS, Heermann S, Krieglstein K, Zerr I, Bahr M, Lingor P (2010) TGF-beta 1 enhances neurite outgrowth via regulation of proteasome function and EFABP. Neurobiol Dis 38:395–404

    Article  PubMed  CAS  Google Scholar 

  186. White RE, Yin FQ, Jakeman LB (2008) TGF-alpha increases astrocyte invasion and promotes axonal growth into the lesion following spinal cord injury in mice. Exp Neurol 214:10–24

    Article  PubMed  CAS  Google Scholar 

  187. Hausott B, Schlick B, Vallant N, Dorn R, Klimaschewski L (2008) Promotion of neurite outgrowth by fibroblast growth factor receptor 1 overexpression and lysosomal inhibition of receptor degradation in pheochromocytoma cells and adult sensory neurons. Neuroscience 153:461–473

    Article  PubMed  CAS  Google Scholar 

  188. Seki T, Abdel Nazeer A, Sekimoto K, Guao Y, Al-jahdari W, Saito S (2010) Fibroblast growth factor and insulin-like growth factor rescue growth cones of sensory neurites from collapse after tetracaine-induced injury. Anesth Analg 110:1468–1472

    Article  PubMed  CAS  Google Scholar 

  189. Jungnickel J, Haastert K, Grzybek M, Thau N, Lipokatic-Takacs E, Ratzka A, Nolle A, Claus P, Grothe C (2010) Mice lacking basic fibroblast growth factor showed faster sensory recovery. Exp Neurol 223:166–172

    Article  PubMed  CAS  Google Scholar 

  190. Joung I, Yoo M, Woo JH, Chang CY, Heo H, Kwon YK (2010) Secretion of EGF-like domain of heregulinbeta promotes axonal growth and functional recovery of injured sciatic nerve. Mol Cells 30:477–484

    Article  PubMed  CAS  Google Scholar 

  191. Tsai NP, Tsui YC, Pintar JE, Loh HH, Wei LN (2010) Kappa opioid receptor contributes to EGF-stimulated neurite extension in development. Proc Natl Acad Sci U S A 107:3216–3221

    Article  PubMed  CAS  Google Scholar 

  192. Hermann PM, Nicol JJ, Nagle GT, Bulloch AG, Wildering WC (2005) Epidermal growth factor-dependent enhancement of axonal regeneration in the pond snail Lymnaea stagnalis: role of phagocyte survival. J Comp Neurol 492:383–400

    Article  PubMed  CAS  Google Scholar 

  193. Hunter RW, Hers I (2009) Insulin/IGF-1 hybrid receptor expression on human platelets: consequences for the effect of insulin on platelet function. J Thromb Haemost JTH 7:2123–2130

    Article  CAS  Google Scholar 

  194. Emel E, Ergun SS, Kotan D, Gursoy EB, Parman Y, Zengin A, Nurten A (2011) Effects of insulin-like growth factor-I and platelet-rich plasma on sciatic nerve crush injury in a rat model. J Neurosurg 114:522–528

    Article  PubMed  CAS  Google Scholar 

  195. Yamazaki T, Sabit H, Oya T, Ishii Y, Hamashima T, Tokunaga A, Ishizawa S, Jie S, Kurashige Y, Matsushima T, Furuta I, Noguchi M, Sasahara M (2009) Activation of MAP kinases, Akt and PDGF receptors in injured peripheral nerves. J Peripher Nerv Syst JPNS 14:165–176

    Article  CAS  Google Scholar 

  196. Oya T, Zhao YL, Takagawa K, Kawaguchi M, Shirakawa K, Yamauchi T, Sasahara M (2002) Platelet-derived growth factor-b expression induced after rat peripheral nerve injuries. Glia 38:303–312

    Article  PubMed  Google Scholar 

  197. Hermanson M, Olsson T, Westermark B, Funa K (1995) PDGF and its receptors following facial nerve axotomy in rats: expression in neurons and surrounding glia. Exp Brain Res Exp Hirnforsch Experimentation Cerebrale 102:415–422

    CAS  Google Scholar 

  198. Oudega M, Xu XM, Guenard V, Kleitman N, Bunge MB (1997) A combination of insulin-like growth factor-I and platelet-derived growth factor enhances myelination but diminishes axonal regeneration into Schwann cell grafts in the adult rat spinal cord. Glia 19:247–258

    Article  PubMed  CAS  Google Scholar 

  199. Ogata T, Yamamoto S, Nakamura K, Tanaka S (2006) Signaling axis in schwann cell proliferation and differentiation. Mol Neurobiol 33:51–62

    Article  PubMed  CAS  Google Scholar 

  200. Yamashita T, Ishii S, Usui M (1998) Pain relief after nerve resection for post-traumatic neuralgia. J Bone Joint Surg Br Vol 80:499–503

    Article  CAS  Google Scholar 

  201. Sanchez M, Guadilla J, Fiz N, Andia I (2012) Ultrasound-guided platelet-rich plasma injections for the treatment of osteoarthritis of the hip. Rheumatology 51:144–150

    Article  PubMed  CAS  Google Scholar 

  202. Mei-Dan O, Carmont MR, Laver L, Mann G, Maffulli N, Nyska M (2012) Platelet-rich plasma or hyaluronate in the management of osteochondral lesions of the talus. Am J Sports Med 40:534–541

    Article  PubMed  Google Scholar 

  203. Hechtman KS, Uribe JW, Botto-vanDemden A, Kiebzak GM (2011) Platelet-rich plasma injection reduces pain in patients with recalcitrant epicondylitis. Orthopedics 34:92

    PubMed  Google Scholar 

  204. Scudeller L, Del Fante C, Perotti C, Pavesi CF, Coscia D, Scotti V, Tinelli C (2011) N of 1, two contemporary arm, randomised controlled clinical trial for bilateral epicondylitis: a new study design. BMJ 343:d7653

    Article  PubMed  Google Scholar 

  205. Li M, Zhang C, Ai Z, Yuan T, Feng Y, Jia W (2011) [Therapeutic effectiveness of intra-knee-articular injection of platelet-rich plasma on knee articular cartilage degeneration]. Zhongguo xiu fu chong jian wai ke za zhi=Zhongguo xiufu chongjian waike zazhi=Chinese J Reparative Reconstr Surg 25:1192–1196

    Google Scholar 

  206. Kon E, Mandelbaum B, Buda R, Filardo G, Delcogliano M, Timoncini A, Fornasari PM, Giannini S, Marcacci M (2011) Platelet-rich plasma intra-articular injection versus hyaluronic acid viscosupplementation as treatments for cartilage pathology: from early degeneration to osteoarthritis. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc North Am Int Arthrosc Assoc 27:1490–1501

    Article  Google Scholar 

  207. Andia I, Sanchez M, Maffulli N (2011) Platelet rich plasma therapies for sports muscle injuries: any evidence behind clinical practice? Expert Opin Biol Ther 11:509–518

    Article  PubMed  Google Scholar 

  208. Andia I, Sanchez M, Maffulli N (2012) Joint pathology and platelet-rich plasma therapies. Expert Opin Biol Ther 12:7–22

    Article  PubMed  CAS  Google Scholar 

  209. Bava ED, Barber FA (2011) Platelet-rich plasma products in sports medicine. Physician Sportsmedicine 39:94–99

    Article  PubMed  Google Scholar 

  210. Araki J, Jona M, Eto H, Aoi N, Kato H, Suga H, Doi K, Yatomi Y, Yoshimura K (2012) Optimized preparation method of platelet-concentrated plasma and noncoagulating platelet-derived factor concentrates: maximization of platelet concentration and removal of fibrinogen. Tissue engineering. Part C Methods 18:176–185

    Article  CAS  Google Scholar 

  211. Yu W, Wang J, Yin J Platelet-rich plasma: a promising product for treatment of peripheral nerve regeneration after nerve injury. Int J Neurosci 121:176–180

  212. Maffulli N, Del Buono A (2012) Platelet plasma rich products in musculoskeletal medicine: any evidence? Surgeon 10:148–150

    Article  PubMed  Google Scholar 

  213. Elgazzar RF, Mutabagani MA, Abdelaal SE, Sadakah AA (2008) Platelet rich plasma may enhance peripheral nerve regeneration after cyanoacrylate reanastomosis: a controlled blind study on rats. Int J Oral Maxillofac Surg 37:748–755

    Article  PubMed  CAS  Google Scholar 

  214. Yu W, Wang J, Yin J (2011) Platelet-rich plasma: a promising product for treatment of peripheral nerve regeneration after nerve injury. Int J Neurosci 121:176–180

    Article  PubMed  Google Scholar 

  215. Wu CC, Wu YN, Ho HO, Chen KC, Sheu MT, Chiang HS (2012) The neuroprotective effect of platelet-rich plasma on erectile function in bilateral cavernous nerve injury rat model. J Sex Med 9:2838

    Article  PubMed  Google Scholar 

  216. Cho HH, Jang S, Lee SC, Jeong HS, Park JS, Han JY, Lee KH, Cho YB (2010) Effect of neural-induced mesenchymal stem cells and platelet-rich plasma on facial nerve regeneration in an acute nerve injury model. Laryngoscope 120:907–913

    Article  PubMed  CAS  Google Scholar 

  217. Farrag TY, Lehar M, Verhaegen P, Carson KA, Byrne PJ (2007) Effect of platelet rich plasma and fibrin sealant on facial nerve regeneration in a rat model. Laryngoscope 117:157–165

    Article  PubMed  Google Scholar 

  218. Takeuchi M, Kamei N, Shinomiya R, Sunagawa T, Suzuki O, Kamoda H, Ohtori S, Ochi M (2012) Human platelet-rich plasma promotes axon growth in brain-spinal cord coculture. Neuroreport 23:712–716

    Article  PubMed  Google Scholar 

  219. Piskin A, Kaplan S, Aktas A, Ayyildiz M, Raimondo S, Alic T, Bozkurt HH, Geuna S (2009) Platelet gel does not improve peripheral nerve regeneration: an electrophysiological, stereological, and electron microscopic study. Microsurgery 29:144–153

    Article  PubMed  Google Scholar 

  220. Duan J, Kuang W, Tan J, Li H, Zhang Y, Hirotaka K, Tadashi K Differential effects of platelet rich plasma and washed platelets on the proliferation of mouse MSC cells. Mol Biol Rep 38:2485–2490

  221. Pak J (2012) Autologous adipose tissue-derived stem cells induce persistent bone-like tissue in osteonecrotic femoral heads. Pain Physician 15:75–85

    PubMed  Google Scholar 

  222. Tischler M (2002) Platelet rich plasma. The use of autologous growth factors to enhance bone and soft tissue grafts. N Y State Dental J 68:22–24

    Google Scholar 

  223. Wang X, Luo E, Li Y, Hu J (2011) Schwann-like mesenchymal stem cells within vein graft facilitate facial nerve regeneration and remyelination. Brain Res 1383:71–80

    Article  PubMed  CAS  Google Scholar 

  224. Ladak A, Olson J, Tredget EE, Gordon T (2011) Differentiation of mesenchymal stem cells to support peripheral nerve regeneration in a rat model. Exp Neurol 228:242–252

    Article  PubMed  CAS  Google Scholar 

  225. Hernandeza J, Torres-Espina A, Navarro X (2011) Adult stem cell transplants for spinal cord injury repair: current state in preclinical research. Current Stem Cell Res Ther 6:273–287

    Article  Google Scholar 

  226. Nurgali K, Qu Z, Hunne B, Thacker M, Pontell L, Furness JB (2011) Morphological and functional changes in guinea-pig neurons projecting to the ileal mucosa at early stages after inflammatory damage. J Physiol 589:325–339

    Article  PubMed  CAS  Google Scholar 

  227. Jankowski MP, Lawson JJ, McIlwrath SL, Rau KK, Anderson CE, Albers KM, Koerber HR (2009) Sensitization of cutaneous nociceptors after nerve transection and regeneration: possible role of target-derived neurotrophic factor signaling. J Neurosci 29:1636–1647

    Article  PubMed  CAS  Google Scholar 

  228. Kuffler DP, Reyes O, Sosa IJ, Santiago-Figueroa J (2011) Neurological recovery across a 12-cm-long ulnar nerve gap repaired 3.25 years post trauma: case report. Neurosurgery 69:E1321–E1326

    Article  PubMed  Google Scholar 

  229. Reyes O, Sosa IJ, Santiago J, Kuffler DP (2007) A novel technique leading to complete sensory and motor recovery across a long peripheral nerve gap. P R Health Sci J 26:225–228

    PubMed  Google Scholar 

  230. Giummarra MJ, Moseley GL (2011) Phantom limb pain and bodily awareness: current concepts and future directions. Curr Opin Anaesthesiol 24:524–531

    Article  PubMed  Google Scholar 

  231. Everts PA, Brown Mahoney C, Hoffmann JJ, Schonberger JP, Box HA, van Zundert A, Knape JT (2006) Platelet-rich plasma preparation using three devices: implications for platelet activation and platelet growth factor release. Growth Factors 24:165–171

    Article  PubMed  CAS  Google Scholar 

  232. Ding XG, Li SW, Zheng XM, Hu LQ, Hu WL, Luo Y (2009) The effect of platelet-rich plasma on cavernous nerve regeneration in a rat model. Asian J Androl 11:215–221

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

Production of this paper involved no financial support or conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien P. Kuffler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuffler, D.P. Platelet-Rich Plasma and the Elimination of Neuropathic Pain. Mol Neurobiol 48, 315–332 (2013). https://doi.org/10.1007/s12035-013-8494-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-013-8494-7

Keywords

Navigation