Skip to main content

Advertisement

Log in

Anxiolytic Actions of Motilin in the Basolateral Amygdala

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Motilin is a 22-amino-acid gastrointestinal polypeptide that was first isolated from the porcine intestine. We identified that motilin receptor is highly expressed in GABAergic interneurons in the basolateral nucleus (BLA) of the amygdala, the structure of which is closely involved in assigning stress disorder and anxiety. However, little is known about the role of motilin in BLA neuronal circuits and the molecular mechanisms of stress-related anxiety. Whole-cell recordings from amygdala slices showed that motilin depolarized the interneurons and facilitated GABAergic transmission in the BLA, which is mimicked by the motilin receptor agonist, erythromycin. BLA local injection of erythromycin or motilin can reduce the anxiety-like behavior in mice after acute stress. Therefore, motilin is essential in regulating interneuron excitability and GABAergic transmission in BLA. Moreover, the anxiolytic actions of motilin can partly be explained by modulating the BLA neuronal circuits. The present data demonstrate the importance of motilin in anxiety and the development of motilin receptor non-peptide agonist as a clear target for the potential treatment of anxiety disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brown JC, Cook MA, Dryburgh JR (1973) Motilin, a gastric motor activity stimulating polypeptide: the complete amino acid sequence. Can J Biochem 51(5):533–537

    Article  PubMed  CAS  Google Scholar 

  2. Fox JE (1984) Motilin—an update. Life Sci 35(7):695–706

    Article  PubMed  CAS  Google Scholar 

  3. Itoh Z (1997) Motilin and clinical application. Peptides 18(4):593–608

    Article  PubMed  CAS  Google Scholar 

  4. Depoortere I, Van Assche G, Peeters TL (1997) Distribution and subcellular localization of motilin binding sites in the rabbit brain. Brain Res 777(1–2):103–109

    PubMed  CAS  Google Scholar 

  5. Huang Z, De Clercq P, Depoortere I, Peeters TL (1998) Isolation and sequence of cDNA encoding the motilin precursor from monkey intestine. Demonstration of the motilin precursor in the monkey brain. FEBS Lett 435(2–3):149–152

    Article  PubMed  CAS  Google Scholar 

  6. Xu L, Depoortere I, Tang M, Peeters TL (2001) Identification and expression of the motilin precursor in the guinea pig. FEBS Lett 490(1–2):7–10

    Article  PubMed  CAS  Google Scholar 

  7. Xu L, Sun X, Depoortere I, Lu J, Guo F, Peeters TL (2008) Effect of motilin on the discharge of rat hippocampal neurons responding to gastric distension and its potential mechanism. Peptides 29(4):585–592

    Article  PubMed  CAS  Google Scholar 

  8. Chen H, Chen L, Wang JJ, Wei HJ, Yung WH (2007) Distribution and electrophysiological effects of motilin in Purkinje cells. Neuroreport 18(13):1345–1349

    Article  PubMed  CAS  Google Scholar 

  9. Feng X, Peeters TL, Tang M (2007) Motilin activates neurons in the rat amygdala and increases gastric motility. Peptides 28(3):625–631

    Article  PubMed  CAS  Google Scholar 

  10. Korte SM, De Boer SF (2003) A robust animal model of state anxiety: fear-potentiated behaviour in the elevated plus-maze. Eur J Pharmacol 463(1–3):163–175

    Article  PubMed  Google Scholar 

  11. Kim SS, Wang H, Li XY, Chen T, Mercaldo V, Descalzi G, Wu LJ, Zhuo M (2011) Neurabin in the anterior cingulate cortex regulates anxiety-like behavior in adult mice. Mol Brain 4:6

    Article  PubMed  CAS  Google Scholar 

  12. Currie PJ, Khelemsky R, Rigsbee EM, Dono LM, Coiro CD, Chapman CD, Hinchcliff K (2012) Ghrelin is an orexigenic peptide and elicits anxiety-like behaviors following administration into discrete regions of the hypothalamus. Behav Brain Res 226(1):96–105

    Article  PubMed  CAS  Google Scholar 

  13. Lee C, Parks GS, Civelli O (2011) Anxiolytic effects of the MCH1R antagonist TPI 1361-17. J Mol Neurosci 43(2):132–137

    Article  PubMed  CAS  Google Scholar 

  14. LeDoux JE (2000) The amygdala and emotion: a view through fear. In: Aggleton PJ (ed) The amygdala. Oxford Univ. Press, New York, pp 289–310

    Google Scholar 

  15. Sajdyk TJ, Shekhar A (1997) Excitatory amino acid receptor antagonists block the cardiovascular and anxiety responses elicited by gamma-aminobutyric acid: a receptor blockade in the basolateral amygdala of rats. J Pharmacol Exp Ther 283(2):969–977

    PubMed  CAS  Google Scholar 

  16. Tasan RO, Nguyen NK, Weger S, Sartori SB, Singewald N, Heilbronn R, Herzog H, Sperk G (2010) The central and basolateral amygdala are critical sites of neuropeptide Y/Y2 receptor-mediated regulation of anxiety and depression. J Neurosci 30(18):6282–6290

    Article  PubMed  CAS  Google Scholar 

  17. Etkin A, Klemenhagen KC, Dudman JT, Rogan MT, Hen R, Kandel ER, Hirsch J (2004) Individual differences in trait anxiety predict the response of the basolateral amygdala to unconsciously processed fearful faces. Neuron 44(6):1043–1055

    Article  PubMed  CAS  Google Scholar 

  18. Jodar L, Takahashi M, Kaneto H (1995) Effects of footshock-, psychological- and forced swimming-stress on the learning and memory processes: involvement of opioidergic pathways. Jpn J Pharmacol 67(2):143–147

    Article  PubMed  CAS  Google Scholar 

  19. Schneider AM, Simson PE (2007) NAN-190 potentiates the impairment of retention produced by swim stress. Pharmacol Biochem Behav 87(1):73–80

    Article  PubMed  CAS  Google Scholar 

  20. Guo YY, Liu SB, Cui GB, Ma L, Feng B, Xing JH, Yang Q, Li XQ, Wu YM, Xiong LZ, Zhang W, Zhao MG (2012) Acute stress induces down-regulation of large-conductance Ca2+-activated potassium channels in the lateral amygdala. J Physiol 590(Pt 4):875–886

    PubMed  CAS  Google Scholar 

  21. Sudo H, Yoshida S, Ozaki K, Muramatsu H, Onoma M, Yogo K, Kamei K, Cynshi O, Kuromaru O, Peeters TL, Takanashi H (2008) Oral administration of MA-2029, a novel selective and competitive motilin receptor antagonist, inhibits motilin-induced intestinal contractions and visceral pain in rabbits. Eur J Pharmacol 581(3):296–305

    Article  PubMed  CAS  Google Scholar 

  22. Ozaki K, Onoma M, Muramatsu H, Sudo H, Yoshida S, Shiokawa R, Yogo K, Kamei K, Cynshi O, Kuromaru O, Peeters TL, Takanashi H (2009) An orally active motilin receptor antagonist, MA-2029, inhibits motilin-induced gastrointestinal motility, increase in fundic tone, and diarrhea in conscious dogs without affecting gastric emptying. Eur J Pharmacol 615(1–3):185–192

    Article  PubMed  CAS  Google Scholar 

  23. Tsvetkov E, Shin RM, Bolshakov VY (2004) Glutamate uptake determines pathway specificity of long-term potentiation in the neural circuitry of fear conditioning. Neuron 41(1):139–151

    Article  PubMed  CAS  Google Scholar 

  24. Wu LJ, Ko SW, Toyoda H, Zhao MG, Xu H, Vadakkan KI, Ren M, Knifed E, Shum F, Quan J, Zhang XH, Zhuo M (2007) Increased anxiety-like behavior and enhanced synaptic efficacy in the amygdala of GluR5 knockout mice. PLoS One 2(1):e167

    Article  PubMed  Google Scholar 

  25. Cai GX, Liu BY, Yi J, Chen XM, Liu FL (2011) Simotang enhances gastrointestinal motility, motilin and cholecystokinin expression in chronically stressed mice. World J Gastroenterol 17(12):1594–1599

    Article  PubMed  Google Scholar 

  26. Liu M, Dong L, Zhu WY (2005) Distribution and role of motilin receptor in the amygdala of rats. Di Yi Jun Yi Da Xue Xue Bao 25(9):1100–1104

    PubMed  CAS  Google Scholar 

  27. McDonald AJ (1982) Cytoarchitecture of the central amygdaloid nucleus of the rat. J Comp Neurol 208(4):401–418

    Article  PubMed  CAS  Google Scholar 

  28. Depoortere I (2001) Motilin and motilin receptors: characterization and functional significance. Verh K Acad Geneeskd Belg 63(6):511–529

    PubMed  CAS  Google Scholar 

  29. Harris JA, Westbrook RF (1995) Effects of benzodiazepine microinjection into the amygdala or periaqueductal gray on the expression of conditioned fear and hypoalgesia in rats. Behav Neurosci 109(2):295–304

    Article  PubMed  CAS  Google Scholar 

  30. Nagy J, Zambo K, Decsi L (1979) Anti-anxiety action of diazepam after intra-amygdaloid application in the rat. Neuropharmacology 18(6):573–576

    Article  PubMed  CAS  Google Scholar 

  31. Pesold C, Treit D (1995) The central and basolateral amygdala differentially mediate the anxiolytic effects of benzodiazepines. Brain Res 671(2):213–221

    Article  PubMed  CAS  Google Scholar 

  32. Creager R, Dunwiddie T, Lynch G (1980) Paired-pulse and frequency facilitation in the CA1 region of the in vitro rat hippocampus. J Physiol 299:409–424

    PubMed  CAS  Google Scholar 

  33. Momose K, Inui A, Asakawa A, Ueno N, Nakajima M, Kasuga M (1998) Anxiolytic effect of motilin and reversal with GM-109, a motilin antagonist, in mice. Peptides 19(10):1739–1742

    Article  PubMed  CAS  Google Scholar 

  34. Asakawa A, Inui A, Momose K, Ueno N, Fujino MA, Kasuga M (1998) Motilin increases food intake in mice. Peptides 19(6):987–990

    Article  PubMed  CAS  Google Scholar 

  35. Rosenfeld DJ, Garthwaite TL (1987) Central administration of motilin stimulates feeding in rats. Physiol Behav 39(6):753–756

    Article  PubMed  CAS  Google Scholar 

  36. Bernier NJ, Peter RE (2001) The hypothalamic–pituitary–interrenal axis and the control of food intake in teleost fish. Comp Biochem Physiol B Biochem Mol Biol 129(2–3):639–644

    Article  PubMed  CAS  Google Scholar 

  37. Carr JA (2002) Stress, neuropeptides, and feeding behavior: a comparative perspective. Integr Comp Biol 42(3):582–590

    Article  PubMed  CAS  Google Scholar 

  38. Chrousos GP, Gold PW (1992) The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 267(9):1244–1252

    Article  PubMed  CAS  Google Scholar 

  39. Jacobowitz DM, O’Donohue TL, Chey WY, Chang TM (1981) Mapping of motilin-immunoreactive neurons of the rat brain. Peptides 2(4):479–487

    Article  PubMed  CAS  Google Scholar 

  40. Phillis JW, Kirkpatrick JR (1979) Motilin excites neurons in the cerebral cortex and spinal cord. Eur J Pharmacol 58(4):469–472

    Article  PubMed  CAS  Google Scholar 

  41. Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405

    Article  PubMed  CAS  Google Scholar 

  42. Liu H, Qiu D, Zhou X, Niu W, Qin X, Cai Y, Wang J, Chen Y (2010) Erythromycin inhibited glycinergic inputs to gastric vagal motoneurons in brainstem slices of newborn rats. Neurogastroenterol Motil 22(11):1232–1239

    Article  PubMed  CAS  Google Scholar 

  43. Serra M, Pisu MG, Littera M, Papi G, Sanna E, Tuveri F, Usala L, Purdy RH, Biggio G (2000) Social isolation-induced decreases in both the abundance of neuroactive steroids and GABA(A) receptor function in rat brain. J Neurochem 75(2):732–740

    Article  PubMed  CAS  Google Scholar 

  44. Cullinan WE, Ziegler DR, Herman JP (2008) Functional role of local GABAergic influences on the HPA axis. Brain Struct Funct 213(1–2):63–72

    Article  PubMed  CAS  Google Scholar 

  45. Feighner SD, Tan CP, McKee KK, Palyha OC, Hreniuk DL, Pong SS, Austin CP, Figueroa D, MacNeil D, Cascieri MA, Nargund R, Bakshi R, Abramovitz M, Stocco R, Kargman S, O’Neill G, Van Der Ploeg LH, Evans J, Patchett AA, Smith RG, Howard AD (1999) Receptor for motilin identified in the human gastrointestinal system. Science 284(5423):2184–2188

    Article  PubMed  CAS  Google Scholar 

  46. Xu L, Depoortere I, Vertongen P, Waelbroeck M, Robberecht P, Peeters TL (2005) Motilin and erythromycin-A share a common binding site in the third transmembrane segment of the motilin receptor. Biochem Pharmacol 70(6):879–887

    Article  PubMed  CAS  Google Scholar 

  47. Omura S, Tsuzuki K, Sunazuka T, Marui S, Toyoda H, Inatomi N, Itoh Z (1987) Macrolides with gastrointestinal motor stimulating activity. J Med Chem 30(11):1941–1943

    Article  PubMed  CAS  Google Scholar 

  48. Okano H, Inui A, Ueno N, Morimoto S, Ohmoto A, Miyamoto M, Aoyama N, Nakajima Y, Baba S, Kasuga M (1996) EM523L, a nonpeptide motilin agonist, stimulates gastric emptying and pancreatic polypeptide secretion. Peptides 17(6):895–900

    Article  PubMed  CAS  Google Scholar 

  49. Sanger GJ, Westaway SM, Barnes AA, Macpherson DT, Muir AI, Jarvie EM, Bolton VN, Cellek S, Naslund E, Hellstrom PM, Borman RA, Unsworth WP, Matthews KL, Lee K (2009) GSK962040: a small molecule, selective motilin receptor agonist, effective as a stimulant of human and rabbit gastrointestinal motility. Neurogastroenterol Motil 21(6):657–664, e630–651

    Article  PubMed  CAS  Google Scholar 

  50. McLemore R, Lunt B, Salameh S, DiBaise JK, Crowell MD, Vernon BL (2010) Development of a transmucosal technique for erythromycin delivery to treat gastroparesis. J Pharm Sci 99(6):2905–2913

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We kindly thank Chugai Pharmaceutical Co., Ltd. (Japan) for the gift of the motilin receptor antagonist MA-2029. This work was supported by National Natural Science Foundation of China No. 31070923 and 31271144.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-qiang Li or Ming-gao Zhao.

Additional information

Bin Feng, Jin-cheng Liu, and Jun Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, B., Liu, Jc., Zhang, J. et al. Anxiolytic Actions of Motilin in the Basolateral Amygdala. Mol Neurobiol 47, 892–902 (2013). https://doi.org/10.1007/s12035-012-8383-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8383-5

Keywords

Navigation