Skip to main content

Advertisement

Log in

Driving Apoptosis-relevant Proteins Toward Neural Differentiation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Emerging evidence suggests that apoptosis regulators and executioners may control cell fate, without involving cell death per se. Indeed, several conserved elements of apoptosis are integral components of terminal differentiation, which must be restrictively activated to assure differentiation efficiency, and carefully regulated to avoid cell loss. A better understanding of the molecular mechanisms underlying key checkpoints responsible for neural differentiation, as an alternative to cell death will surely make stem cells more suitable for neuro-replacement therapies. In this review, we summarize recent studies on the mechanisms underlying the non-apoptotic function of p53, caspases, and Bcl-2 family members during neural differentiation. In addition, we discuss how apoptosis-regulatory proteins control the decision between differentiation, self-renewal, and cell death in neural stem cells, and how activity is restrained to prevent cell loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

Bcl-2:

B cell lymphoma-2

CAD:

Caspase-activated DNase

CNS:

Central nervous system

ESC:

Embryonic stem cells

IAP:

Inhibitor of apoptosis protein

iPSC:

Induced pluripotent stem cells

LTP:

Long-term potentiation

MMP:

Mitochondrial membrane permeabilization

MSC:

Mesenchymal stem cells

NGF:

Nerve growth factor

NMDA:

N-methyl-D-aspartate

NSC:

Neural stem cells

PTM:

Postranslational modifications

SVZ:

Subventricular zone

TA:

Transactivation domain

References

  1. Ramon y Cajal S (1913) Degeneration and regeneration of the nervous system. Oxford University Press, London

    Google Scholar 

  2. Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335

    PubMed  CAS  Google Scholar 

  3. Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22:629–634

    PubMed  CAS  Google Scholar 

  4. Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    PubMed  CAS  Google Scholar 

  5. Kempermann G, Gage FH (2000) Neurogenesis in the adult hippocampus. Novartis Found Symp 231:220–235

    PubMed  CAS  Google Scholar 

  6. Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA, Zhang SC (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A 107:4335–4340

    PubMed  CAS  Google Scholar 

  7. Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, Citri A, Sebastiano V, Marro S, Sudhof TC, Wernig M (2011) Induction of human neuronal cells by defined transcription factors. Nature 476:220–223

    PubMed  CAS  Google Scholar 

  8. Fernando P, Kelly JF, Balazsi K, Slack RS, Megeney LA (2002) Caspase 3 activity is required for skeletal muscle differentiation. Proc Natl Acad Sci U S A 99:11025–11030

    PubMed  CAS  Google Scholar 

  9. Fernando P, Brunette S, Megeney LA (2005) Neural stem cell differentiation is dependent upon endogenous caspase 3 activity. FASEB J 19:1671–1673

    PubMed  CAS  Google Scholar 

  10. Fernando P, Megeney LA (2007) Is caspase-dependent apoptosis only cell differentiation taken to the extreme? FASEB J 21:8–17

    PubMed  CAS  Google Scholar 

  11. Stiewe T (2007) The p53 family in differentiation and tumorigenesis. Nat Rev Cancer 7:165–168

    PubMed  CAS  Google Scholar 

  12. Ellis RE, Yuan JY, Horvitz HR (1991) Mechanisms and functions of cell death. Annu Rev Cell Biol 7:663–698

    PubMed  CAS  Google Scholar 

  13. Reed JC (2002) Apoptosis-based therapies. Nat Rev Drug Discov 1:111–121

    PubMed  CAS  Google Scholar 

  14. Shi Y (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9:459–470

    PubMed  CAS  Google Scholar 

  15. Ashkenazi A (2002) Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2:420–430

    PubMed  CAS  Google Scholar 

  16. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of Bid by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    PubMed  CAS  Google Scholar 

  17. Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH (2000) Pro-apoptotic cascade activates Bid, which oligomerizes Bak or Bax into pores that result in the release of cytochrome c. Cell Death Differ 7:1166–1173

    PubMed  CAS  Google Scholar 

  18. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    PubMed  CAS  Google Scholar 

  19. Debatin KM, Krammer PH (2004) Death receptors in chemotherapy and cancer. Oncogene 23:2950–2966

    PubMed  CAS  Google Scholar 

  20. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    PubMed  CAS  Google Scholar 

  21. Sharpe JC, Arnoult D, Youle RJ (2004) Control of mitochondrial permeability by Bcl-2 family members. Biochim Biophys Acta 1644:107–113

    PubMed  CAS  Google Scholar 

  22. Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299

    PubMed  CAS  Google Scholar 

  23. Michalak EM, Villunger A, Adams JM, Strasser A (2008) In several cell types tumour suppressor p53 induces apoptosis largely via PUMA but NOXA can contribute. Cell Death Differ 15:1019–1029

    PubMed  CAS  Google Scholar 

  24. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11:577–590

    PubMed  CAS  Google Scholar 

  25. Sot B, Freund SM, Fersht AR (2007) Comparative biophysical characterization of p53 with the pro-apoptotic Bak and the anti-apoptotic Bcl-xL. J Biol Chem 282:29193–29200

    PubMed  CAS  Google Scholar 

  26. Galluzzi L, Morselli E, Kepp O, Vitale I, Pinti M, Kroemer G (2011) Mitochondrial liaisons of p53. Antioxid Redox Signal 15:1691–1714

    PubMed  CAS  Google Scholar 

  27. Galluzzi L, Kepp O, Trojel-Hansen C, Kroemer G (2012) Non-apoptotic functions of apoptosis-regulatory proteins. EMBO Rep 13:322–330

    PubMed  CAS  Google Scholar 

  28. Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137:413–431

    PubMed  CAS  Google Scholar 

  29. Miyashita T, Krajewski S, Krajewska M, Wang HG, Lin HK, Liebermann DA, Hoffman B, Reed JC (1994) Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9:1799–1805

    PubMed  CAS  Google Scholar 

  30. Cervantes RB, Stringer JR, Shao C, Tischfield JA, Stambrook PJ (2002) Embryonic stem cells and somatic cells differ in mutation frequency and type. Proc Natl Acad Sci U S A 99:3586–3590

    PubMed  CAS  Google Scholar 

  31. Aladjem MI, Spike BT, Rodewald LW, Hope TJ, Klemm M, Jaenisch R, Wahl GM (1998) ES cells do not activate p53-dependent stress responses and undergo p53-independent apoptosis in response to DNA damage. Curr Biol 8:145–155

    PubMed  CAS  Google Scholar 

  32. Lin T, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E, Xu Y (2005) p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 7:165–171

    PubMed  CAS  Google Scholar 

  33. Li M, He Y, Dubois W, Wu X, Shi J, Huang J (2012) Distinct regulatory mechanisms and functions for p53-activated and p53-repressed DNA damage response genes in embryonic stem cells. Mol Cell 46:30–42

    PubMed  CAS  Google Scholar 

  34. Tedeschi A, Di Giovanni S (2009) The non-apoptotic role of p53 in neuronal biology: enlightening the dark side of the moon. EMBO Rep 10:576–583

    PubMed  CAS  Google Scholar 

  35. Qin H, Yu T, Qing T, Liu Y, Zhao Y, Cai J, Li J, Song Z, Qu X, Zhou P, Wu J, Ding M, Deng H (2007) Regulation of apoptosis and differentiation by p53 in human embryonic stem cells. J Biol Chem 282:5842–5852

    PubMed  CAS  Google Scholar 

  36. Maimets T, Neganova I, Armstrong L, Lako M (2008) Activation of p53 by nutlin leads to rapid differentiation of human embryonic stem cells. Oncogene 27:5277–5287

    PubMed  CAS  Google Scholar 

  37. Abdelalim EM, Tooyama I (2012) NPR-C protects embryonic stem cells from apoptosis by regulating p53 levels. Stem Cells Dev 21:1264–1271

    PubMed  CAS  Google Scholar 

  38. Yang A, Kaghad M, Caput D, McKeon F (2002) On the shoulders of giants: p63, p73 and the rise of p53. Trends Genet 18:90–95

    PubMed  Google Scholar 

  39. Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8:275–283

    PubMed  CAS  Google Scholar 

  40. Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A (1999) p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398:708–713

    PubMed  CAS  Google Scholar 

  41. Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, Tabin C, Sharpe A, Caput D, Crum C, McKeon F (1999) p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398:714–718

    PubMed  CAS  Google Scholar 

  42. Yang A, Walker N, Bronson R, Kaghad M, Oosterwegel M, Bonnin J, Vagner C, Bonnet H, Dikkes P, Sharpe A, McKeon F, Caput D (2000) p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404:99–103

    PubMed  CAS  Google Scholar 

  43. Nicotera P, Melino G (2005) Neurodevelopment on route p63. Neuron 48:707–709

    PubMed  CAS  Google Scholar 

  44. Fonseca MB, Nunes AF, Rodrigues CM (2012) c-Jun regulates the stability of anti-apoptotic deltaNp63 in amyloid-beta-induced apoptosis. J Alzheimers Dis 28:685–694

    PubMed  CAS  Google Scholar 

  45. Jacobs WB, Govoni G, Ho D, Atwal JK, Barnabe-Heider F, Keyes WM, Mills AA, Miller FD, Kaplan DR (2005) p63 is an essential proapoptotic protein during neural development. Neuron 48:743–756

    PubMed  CAS  Google Scholar 

  46. Hernández-Acosta NC, Cabrera-Socorro A, Morlans MP, Delgado FJ, Suárez-Solá ML, Sottocornola R, Lu X, González-Gómez M, Meyer G (2011) Dynamic expression of the p53 family members p63 and p73 in the mouse and human telencephalon during development and in adulthood. Brain Res 1372:29–40

    PubMed  Google Scholar 

  47. Holembowski L, Schulz R, Talos F, Scheel A, Wolff S, Dobbelstein M, Moll U (2011) While p73 is essential, p63 is completely dispensable for the development of the central nervous system. Cell Cycle 10:680–689

    PubMed  CAS  Google Scholar 

  48. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221

    PubMed  CAS  Google Scholar 

  49. Armstrong JF, Kaufman MH, Harrison DJ, Clarke AR (1995) High-frequency developmental abnormalities in p53-deficient mice. Curr Biol 5:931–936

    PubMed  CAS  Google Scholar 

  50. Sah VP, Attardi LD, Mulligan GJ, Williams BO, Bronson RT, Jacks T (1995) A subset of p53-deficient embryos exhibit exencephaly. Nat Genet 10:175–180

    PubMed  CAS  Google Scholar 

  51. Louis JM, McFarland VW, May P, Mora PT (1988) The phosphoprotein p53 is down-regulated post-transcriptionally during embryogenesis in vertebrates. Biochim Biophys Acta 950:395–402

    PubMed  CAS  Google Scholar 

  52. Rogel A, Popliker M, Webb CG, Oren M (1985) p53 cellular tumor antigen: analysis of mRNA levels in normal adult tissues, embryos, and tumors. Mol Cell Biol 5:2851–2855

    PubMed  CAS  Google Scholar 

  53. Schmid P, Lorenz A, Hameister H, Montenarh M (1991) Expression of p53 during mouse embryogenesis. Development 113:857–865

    PubMed  CAS  Google Scholar 

  54. Gottlieb E, Haffner R, King A, Asher G, Gruss P, Lonai P, Oren M (1997) Transgenic mouse model for studying the transcriptional activity of the p53 protein: age- and tissue-dependent changes in radiation-induced activation during embryogenesis. EMBO J 16:1381–1390

    PubMed  CAS  Google Scholar 

  55. Komarova EA, Chernov MV, Franks R, Wang K, Armin G, Zelnick CR, Chin DM, Bacus SS, Stark GR, Gudkov AV (1997) Transgenic mice with p53-responsive lacz: p53 activity varies dramatically during normal development and determines radiation and drug sensitivity in vivo. EMBO J 16:1391–1400

    PubMed  CAS  Google Scholar 

  56. Hughes AL, Gollapudi L, Sladek TL, Neet KE (2000) Mediation of nerve growth factor-driven cell cycle arrest in PC12 cells by p53. Simultaneous differentiation and proliferation subsequent to p53 functional inactivation. J Biol Chem 275:37829–37837

    PubMed  CAS  Google Scholar 

  57. Montano X (1997) p53 associates with trk tyrosine kinase. Oncogene 15:245–256

    PubMed  CAS  Google Scholar 

  58. Poluha W, Schonhoff CM, Harrington KS, Lachyankar MB, Crosbie NE, Bulseco DA, Ross AH (1997) A novel, nerve growth factor-activated pathway involving nitric oxide, p53, and p21WAF1 regulates neuronal differentiation of PC12 cells. J Biol Chem 272:24002–24007

    PubMed  CAS  Google Scholar 

  59. Zhang J, Yan W, Chen X (2006) p53 is required for nerve growth factor-mediated differentiation of PC12 cells via regulation of trka levels. Cell Death Differ 13:2118–2128

    PubMed  CAS  Google Scholar 

  60. Browes C, Rowe J, Brown A, Montano X (2001) Analysis of trk A and p53 association. FEBS Lett 497:20–25

    PubMed  CAS  Google Scholar 

  61. Brynczka C, Labhart P, Merrick BA (2007) NGF-mediated transcriptional targets of p53 in PC12 neuronal differentiation. BMC Genomics 8:139

    PubMed  Google Scholar 

  62. Di Giovanni S, Faden AI, Yakovlev A, Duke-Cohan JS, Finn T, Thouin M, Knoblach S, De Biase A, Bregman BS, Hoffman EP (2005) Neuronal plasticity after spinal cord injury: identification of a gene cluster driving neurite outgrowth. FASEB J 19:153–154

    PubMed  Google Scholar 

  63. Lee KH, Li M, Michalowski AM, Zhang X, Liao H, Chen L, Xu Y, Wu X, Huang J (2010) A genomewide study identifies the Wnt signaling pathway as a major target of p53 in murine embryonic stem cells. Proc Natl Acad Sci U S A 107:69–74

    PubMed  CAS  Google Scholar 

  64. Di Giovanni S, Knights CD, Rao M, Yakovlev A, Beers J, Catania J, Avantaggiati ML, Faden AI (2006) The tumor suppressor protein p53 is required for neurite outgrowth and axon regeneration. EMBO J 25:4084–4096

    PubMed  Google Scholar 

  65. Tedeschi A, Nguyen T, Puttagunta R, Gaub P, Di Giovanni S (2009) A p53-CBP/p300 transcription module is required for GAP-43 expression, axon outgrowth, and regeneration. Cell Death Differ 16:543–554

    PubMed  CAS  Google Scholar 

  66. Helton ES, Chen X (2007) p53 modulation of the DNA damage response. J Cell Biochem 100:883–896

    PubMed  CAS  Google Scholar 

  67. Aranha MM, Sola S, Low WC, Steer CJ, Rodrigues CM (2009) Caspases and p53 modulate FOXO3A/Id1 signaling during mouse neural stem cell differentiation. J Cell Biochem 107:748–758

    PubMed  CAS  Google Scholar 

  68. Ostrakhovitch EA, Semenikhin OA (2011) p53-mediated regulation of neuronal differentiation via regulation of dual oxidase maturation factor 1. Neurosci Lett 494:80–85

    PubMed  CAS  Google Scholar 

  69. Solá S, Xavier JM, Santos DM, Aranha MM, Morgado AL, Jepsen K, Rodrigues CM (2011) p53 interaction with JMJD3 results in its nuclear distribution during mouse neural stem cell differentiation. PLoS One 6:e18421

    PubMed  Google Scholar 

  70. Krizhanovsky V, Lowe SW (2009) Stem cells: the promises and perils of p53. Nature 460:1085–1086

    PubMed  CAS  Google Scholar 

  71. Armesilla-Diaz A, Bragado P, Del Valle I, Cuevas E, Lazaro I, Martin C, Cigudosa JC, Silva A (2009) p53 regulates the self-renewal and differentiation of neural precursors. Neuroscience 158:1378–1389

    PubMed  CAS  Google Scholar 

  72. van Lookeren CM, Gill R (1998) Tumor-suppressor p53 is expressed in proliferating and newly formed neurons of the embryonic and postnatal rat brain: Comparison with expression of the cell cycle regulators p21Waf1/cip1, p27Kip1, p57Kip2, p16Ink4a, cyclin G1, and the proto-oncogene Bax. J Comp Neurol 397:181–198

    Google Scholar 

  73. Meletis K, Wirta V, Hede SM, Nister M, Lundeberg J, Frisen J (2006) p53 suppresses the self-renewal of adult neural stem cells. Development 133:363–369

    PubMed  CAS  Google Scholar 

  74. Mori S, Matsuyama K, Mori F, Nakajima K (2001) Supraspinal sites that induce locomotion in the vertebrate central nervous system. Adv Neurol 87:25–40

    PubMed  CAS  Google Scholar 

  75. Han MK, Song EK, Guo Y, Ou X, Mantel C, Broxmeyer HE (2008) Sirt1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell 2:241–251

    PubMed  CAS  Google Scholar 

  76. Gil-Perotin S, Marin-Husstege M, Li J, Soriano-Navarro M, Zindy F, Roussel MF, Garcia-Verdugo JM, Casaccia-Bonnefil P (2006) Loss of p53 induces changes in the behavior of subventricular zone cells: implication for the genesis of glial tumors. J Neurosci 26:1107–1116

    PubMed  CAS  Google Scholar 

  77. Gil-Perotin S, Haines JD, Kaur J, Marin-Husstege M, Spinetta MJ, Kim KH, Duran-Moreno M, Schallert T, Zindy F, Roussel MF, Garcia-Verdugo JM, Casaccia P (2011) Roles of p53 and p27 (Kip1) in the regulation of neurogenesis in the murine adult subventricular zone. Eur J Neurosci 34:1040–1052

    PubMed  Google Scholar 

  78. Niu W, Zou Y, Shen C, Zhang CL (2011) Activation of postnatal neural stem cells requires nuclear receptor TLX. J Neurosci 31:13816–13828

    PubMed  CAS  Google Scholar 

  79. Lavin MF, Gueven N (2006) The complexity of p53 stabilization and activation. Cell Death Differ 13:941–950

    PubMed  CAS  Google Scholar 

  80. Ferecatu I, Rincheval V, Mignotte B, Vayssiere JL (2009) Tickets for p53 journey among organelles. Front Biosci 14:4214–4228

    PubMed  CAS  Google Scholar 

  81. Sims RJ 3rd, Reinberg D (2008) Is there a code embedded in proteins that is based on post-translational modifications? Nat Rev Mol Cell Biol 9:815–820

    PubMed  CAS  Google Scholar 

  82. Xu Y (2003) Regulation of p53 responses by post-translational modifications. Cell Death Differ 10:400–403

    PubMed  CAS  Google Scholar 

  83. Wong K, Zhang J, Awasthi S, Sharma A, Rogers L, Matlock EF, Van Lint C, Karpova T, McNally J, Harrod R (2004) Nerve growth factor receptor signaling induces histone acetyltransferase domain-dependent nuclear translocation of p300/CREB-binding protein-associated factor and hGCN5 acetyltransferases. J Biol Chem 279:55667–55674

    PubMed  CAS  Google Scholar 

  84. Knights CD, Catania J, Di Giovanni S, Muratoglu S, Perez R, Swartzbeck A, Quong AA, Zhang X, Beerman T, Pestell RG, Avantaggiati ML (2006) Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J Cell Biol 173:533–544

    PubMed  CAS  Google Scholar 

  85. Brynczka C, Merrick BA (2007) Nerve growth factor potentiates p53 DNA binding but inhibits nitric oxide-induced apoptosis in neuronal PC12 cells. Neurochem Res 32:1573–1585

    PubMed  CAS  Google Scholar 

  86. Fabian Z, Vecsernyes M, Pap M, Szeberenyi J (2006) The effects of a mutant p53 protein on the proliferation and differentiation of PC12 rat phaeochromocytoma cells. J Cell Biochem 99:1431–1441

    PubMed  CAS  Google Scholar 

  87. Scoumanne A, Chen X (2008) Protein methylation: a new mechanism of p53 tumor suppressor regulation. Histol Histopathol 23:1143–1149

    PubMed  CAS  Google Scholar 

  88. Tsai WW, Nguyen TT, Shi Y, Barton MC (2008) p53-targeted LSD1 functions in repression of chromatin structure and transcription in vivo. Mol Cell Biol 28:5139–5146

    PubMed  CAS  Google Scholar 

  89. Hudson CD, Morris PJ, Latchman DS, Budhram-Mahadeo VS (2005) Brn-3a transcription factor blocks p53-mediated activation of proapoptotic target genes Noxa and Bax in vitro and in vivo to determine cell fate. J Biol Chem 280:11851–11858

    PubMed  CAS  Google Scholar 

  90. Chen D, Zheng W, Lin A, Uyhazi K, Zhao H, Lin H (2012) Pumilio 1 suppresses multiple activators of p53 to safeguard spermatogenesis. Curr Biol 22:420–425

    PubMed  CAS  Google Scholar 

  91. Murray-Zmijewski F, Slee EA, Lu X (2008) A complex barcode underlies the heterogeneous response of p53 to stress. Nat Rev Mol Cell Biol 9:702–712

    PubMed  CAS  Google Scholar 

  92. Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A, Minty A, Chalon P, Lelias JM, Dumont X, Ferrara P, McKeon F, Caput D (1997) Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90:809–819

    PubMed  CAS  Google Scholar 

  93. Muller M, Schilling T, Sayan AE, Kairat A, Lorenz K, Schulze-Bergkamen H, Oren M, Koch A, Tannapfel A, Stremmel W, Melino G, Krammer PH (2005) TAp73/delta Np73 influences apoptotic response, chemosensitivity and prognosis in hepatocellular carcinoma. Cell Death Differ 12:1564–1577

    PubMed  CAS  Google Scholar 

  94. Grob TJ, Novak U, Maisse C, Barcaroli D, Luthi AU, Pirnia F, Hugli B, Graber HU, De Laurenzi V, Fey MF, Melino G, Tobler A (2001) Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53. Cell Death Differ 8:1213–1223

    PubMed  CAS  Google Scholar 

  95. Tomasini R, Tsuchihara K, Wilhelm M, Fujitani M, Rufini A, Cheung CC, Khan F, Itie-Youten A, Wakeham A, Tsao MS, Iovanna JL, Squire J, Jurisica I, Kaplan D, Melino G, Jurisicova A, Mak TW (2008) TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev 22:2677–2691

    PubMed  CAS  Google Scholar 

  96. De Laurenzi V, Raschella G, Barcaroli D, Annicchiarico-Petruzzelli M, Ranalli M, Catani MV, Tanno B, Costanzo A, Levrero M, Melino G (2000) Induction of neuronal differentiation by p73 in a neuroblastoma cell line. J Biol Chem 275:15226–15231

    PubMed  Google Scholar 

  97. Billon N, Terrinoni A, Jolicoeur C, McCarthy A, Richardson WD, Melino G, Raff M (2004) Roles for p53 and p73 during oligodendrocyte development. Development 131:1211–1220

    PubMed  CAS  Google Scholar 

  98. Talos F, Abraham A, Vaseva AV, Holembowski L, Tsirka SE, Scheel A, Bode D, Dobbelstein M, Bruck W, Moll UM (2010) p73 is an essential regulator of neural stem cell maintenance in embryonal and adult CNS neurogenesis. Cell Death Differ 17:1816–1829

    PubMed  CAS  Google Scholar 

  99. Agostini M, Tucci P, Chen H, Knight RA, Bano D, Nicotera P, McKeon F, Melino G (2010) p73 regulates maintenance of neural stem cell. Biochem Biophys Res Commun 403:13–17

    PubMed  CAS  Google Scholar 

  100. Fujitani M, Cancino GI, Dugani CB, Weaver IC, Gauthier-Fisher A, Paquin A, Mak TW, Wojtowicz MJ, Miller FD, Kaplan DR (2010) TAp73 acts via the bHLH Hey2 to promote long-term maintenance of neural precursors. Curr Biol 20:2058–2065

    PubMed  CAS  Google Scholar 

  101. Gonzalez-Cano L, Herreros-Villanueva M, Fernandez-Alonso R, Ayuso-Sacido A, Meyer G, Garcia-Verdugo JM, Silva A, Marques MM, Marin MC (2010) p73 deficiency results in impaired self renewal and premature neuronal differentiation of mouse neural progenitors independently of p53. Cell Death Dis 1:e109

    PubMed  CAS  Google Scholar 

  102. Agostini M, Tucci P, Steinert JR, Shalom-Feuerstein R, Rouleau M, Aberdam D, Forsythe ID, Young KW, Ventura A, Concepcion CP, Han YC, Candi E, Knight RA, Mak TW, Melino G (2011) MicroRNA-34a regulates neurite outgrowth, spinal morphology, and function. Proc Natl Acad Sci U S A 108:21099–21104

    PubMed  CAS  Google Scholar 

  103. Agostini M, Tucci P, Killick R, Candi E, Sayan BS, di Val R, Cervo P, Nicotera P, McKeon F, Knight RA, Mak TW, Melino G (2011) Neuronal differentiation by TAp73 is mediated by microRNA-34a regulation of synaptic protein targets. Proc Natl Acad Sci U S A 108:21093–21098

    PubMed  CAS  Google Scholar 

  104. Li J, Yuan J (2008) Caspases in apoptosis and beyond. Oncogene 27:6194–6206

    PubMed  CAS  Google Scholar 

  105. Yi CH, Yuan J (2009) The jekyll and hyde functions of caspases. Dev Cell 16:21–34

    PubMed  CAS  Google Scholar 

  106. Dix MM, Simon GM, Cravatt BF (2008) Global mapping of the topography and magnitude of proteolytic events in apoptosis. Cell 134:679–691

    PubMed  CAS  Google Scholar 

  107. Mahrus S, Trinidad JC, Barkan DT, Sali A, Burlingame AL, Wells JA (2008) Global sequencing of proteolytic cleavage sites in apoptosis by specific labeling of protein N termini. Cell 134:866–876

    PubMed  CAS  Google Scholar 

  108. Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR, Aunins J et al (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356:768–774

    PubMed  CAS  Google Scholar 

  109. Sjakste N, Sjakste T (2007) Possible involvement of DNA strand breaks in regulation of cell differentiation. Eur J Histochem 51:81–94

    PubMed  CAS  Google Scholar 

  110. Larsen BD, Rampalli S, Burns LE, Brunette S, Dilworth FJ, Megeney LA (2010) Caspase 3/caspase-activated DNase promote cell differentiation by inducing DNA strand breaks. Proc Natl Acad Sci U S A 107:4230–4235

    PubMed  CAS  Google Scholar 

  111. Larsen BD, Megeney LA (2010) Parole terms for a killer: directing caspase3/CAD induced DNA strand breaks to coordinate changes in gene expression. Cell Cycle 9:2940–2945

    PubMed  CAS  Google Scholar 

  112. Carlile GW, Smith DH, Wiedmann M (2004) Caspase-3 has a nonapoptotic function in erythroid maturation. Blood 103:4310–4316

    PubMed  CAS  Google Scholar 

  113. Zermati Y, Garrido C, Amsellem S, Fishelson S, Bouscary D, Valensi F, Varet B, Solary E, Hermine O (2001) Caspase activation is required for terminal erythroid differentiation. J Exp Med 193:247–254

    PubMed  CAS  Google Scholar 

  114. Radley JM, Scurfield G (1980) The mechanism of platelet release. Blood 56:996–999

    PubMed  CAS  Google Scholar 

  115. De Botton S, Sabri S, Daugas E, Zermati Y, Guidotti JE, Hermine O, Kroemer G, Vainchenker W, Debili N (2002) Platelet formation is the consequence of caspase activation within megakaryocytes. Blood 100:1310–1317

    PubMed  Google Scholar 

  116. Ishizaki Y, Jacobson MD, Raff MC (1998) A role for caspases in lens fiber differentiation. J Cell Biol 140:153–158

    PubMed  CAS  Google Scholar 

  117. Fujita J, Crane AM, Souza MK, Dejosez M, Kyba M, Flavell RA, Thomson JA, Zwaka TP (2008) Caspase activity mediates the differentiation of embryonic stem cells. Cell Stem Cell 2:595–601

    PubMed  CAS  Google Scholar 

  118. Janzen V, Fleming HE, Riedt T, Karlsson G, Riese MJ, Lo Celso C, Reynolds G, Milne CD, Paige CJ, Karlsson S, Woo M, Scadden DT (2008) Hematopoietic stem cell responsiveness to exogenous signals is limited by caspase-3. Cell Stem Cell 2:584–594

    PubMed  CAS  Google Scholar 

  119. Mogi M, Togari A (2003) Activation of caspases is required for osteoblastic differentiation. J Biol Chem 278:47477–47482

    PubMed  CAS  Google Scholar 

  120. Miura M, Chen XD, Allen MR, Bi Y, Gronthos S, Seo BM, Lakhani S, Flavell RA, Feng XH, Robey PG, Young M, Shi S (2004) A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J Clin Invest 114:1704–1713

    PubMed  CAS  Google Scholar 

  121. Li F, He Z, Shen J, Huang Q, Li W, Liu X, He Y, Wolf F, Li CY (2010) Apoptotic caspases regulate induction of ipscs from human fibroblasts. Cell Stem Cell 7:508–520

    PubMed  CAS  Google Scholar 

  122. Crawford ED, Wells JA (2011) Caspase substrates and cellular remodeling. Annu Rev Biochem 80:1055–1087

    PubMed  CAS  Google Scholar 

  123. Feinstein-Rotkopf Y, Arama E (2009) Can't live without them, can live with them: roles of caspases during vital cellular processes. Apoptosis 14:980–995

    PubMed  Google Scholar 

  124. Kuo CT, Zhu S, Younger S, Jan LY, Jan YN (2006) Identification of E2/E3 ubiquitinating enzymes and caspase activity regulating Drosophila sensory neuron dendrite pruning. Neuron 51:283–290

    PubMed  CAS  Google Scholar 

  125. Huesmann GR, Clayton DF (2006) Dynamic role of postsynaptic caspase-3 and BIRC4 in zebra finch song-response habituation. Neuron 52:1061–1072

    PubMed  CAS  Google Scholar 

  126. Lu C, Fu W, Salvesen GS, Mattson MP (2002) Direct cleavage of AMPA receptor subunit GluR1 and suppression of AMPA currents by caspase-3: implications for synaptic plasticity and excitotoxic neuronal death. Neuromol Med 1:69–79

    CAS  Google Scholar 

  127. Li Z, Jo J, Jia JM, Lo SC, Whitcomb DJ, Jiao S, Cho K, Sheng M (2010) Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell 141:859–871

    PubMed  CAS  Google Scholar 

  128. Gulyaeva NV, Kudryashov IE, Kudryashova IV (2003) Caspase activity is essential for long-term potentiation. J Neurosci Res 73:853–864

    PubMed  CAS  Google Scholar 

  129. Jo J, Whitcomb DJ, Olsen KM, Kerrigan TL, Lo SC, Bru-Mercier G, Dickinson B, Scullion S, Sheng M, Collingridge G, Cho K (2011) Abeta(1-42) inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3beta. Nat Neurosci 14:545–547

    PubMed  CAS  Google Scholar 

  130. Kudryashova IV, Kudryashov IE, Gulyaeva NV (2006) Long-term potentiation in the hippocampus in conditions of inhibition of caspase-3: analysis of facilitation in paired-pulse stimulation. Neurosci Behav Physiol 36:817–824

    PubMed  CAS  Google Scholar 

  131. Miura M (2011) Apoptotic and non-apoptotic caspase functions in neural development. Neurochem Res 36:1253–1260

    PubMed  CAS  Google Scholar 

  132. Fan Y, Bergmann A (2008) Distinct mechanisms of apoptosis-induced compensatory proliferation in proliferating and differentiating tissues in the Drosophila eye. Dev Cell 14:399–410

    PubMed  CAS  Google Scholar 

  133. Rohn TT, Cusack SM, Kessinger SR, Oxford JT (2004) Caspase activation independent of cell death is required for proper cell dispersal and correct morphology in PC12 cells. Exp Cell Res 295:215–225

    PubMed  CAS  Google Scholar 

  134. Oomman S, Strahlendorf H, Dertien J, Strahlendorf J (2006) Bergmann glia utilize active caspase-3 for differentiation. Brain Res 1078:19–34

    PubMed  CAS  Google Scholar 

  135. Campbell DS, Holt CE (2003) Apoptotic pathway and MAPKs differentially regulate chemotropic responses of retinal growth cones. Neuron 37:939–952

    PubMed  CAS  Google Scholar 

  136. Ohsawa S, Hamada S, Kuida K, Yoshida H, Igaki T, Miura M (2010) Maturation of the olfactory sensory neurons by Apaf-1/caspase-9-mediated caspase activity. Proc Natl Acad Sci U S A 107:13366–13371

    PubMed  CAS  Google Scholar 

  137. Koto A, Kuranaga E, Miura M (2009) Temporal regulation of Drosophila IAP1 determines caspase functions in sensory organ development. J Cell Biol 187:219–231

    PubMed  CAS  Google Scholar 

  138. Weber GF, Menko AS (2005) The canonical intrinsic mitochondrial death pathway has a non-apoptotic role in signaling lens cell differentiation. J Biol Chem 280:22135–22145

    PubMed  CAS  Google Scholar 

  139. Jiao S, Li Z (2011) Nonapoptotic function of Bad and Bax in long-term depression of synaptic transmission. Neuron 70:758–772

    PubMed  CAS  Google Scholar 

  140. Ribeil JA, Zermati Y, Vandekerckhove J, Cathelin S, Kersual J, Dussiot M, Coulon S, Moura IC, Zeuner A, Kirkegaard-Sorensen T, Varet B, Solary E, Garrido C, Hermine O (2007) Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature 445:102–105

    PubMed  CAS  Google Scholar 

  141. Arama E, Agapite J, Steller H (2003) Caspase activity and a specific cytochrome c are required for sperm differentiation in Drosophila. Dev Cell 4:687–697

    PubMed  CAS  Google Scholar 

  142. Plenchette S, Cathelin S, Rebe C, Launay S, Ladoire S, Sordet O, Ponnelle T, Debili N, Phan TH, Padua RA, Dubrez-Daloz L, Solary E (2004) Translocation of the inhibitor of apoptosis protein c-IAP1 from the nucleus to the Golgi in hematopoietic cells undergoing differentiation: a nuclear export signal-mediated event. Blood 104:2035–2043

    PubMed  CAS  Google Scholar 

  143. Kaplan Y, Gibbs-Bar L, Kalifa Y, Feinstein-Rotkopf Y, Arama E (2010) Gradients of a ubiquitin E3 ligase inhibitor and a caspase inhibitor determine differentiation or death in spermatids. Dev Cell 19:160–173

    PubMed  CAS  Google Scholar 

  144. Arama E, Bader M, Rieckhof GE, Steller H (2007) A ubiquitin ligase complex regulates caspase activation during sperm differentiation in Drosophila. PLoS Biol 5:e251

    PubMed  Google Scholar 

  145. Wright KM, Linhoff MW, Potts PR, Deshmukh M (2004) Decreased apoptosome activity with neuronal differentiation sets the threshold for strict IAP regulation of apoptosis. J Cell Biol 167:303–313

    PubMed  CAS  Google Scholar 

  146. Vyas S, Juin P, Hancock D, Suzuki Y, Takahashi R, Triller A, Evan G (2004) Differentiation-dependent sensitivity to apoptogenic factors in PC12 cells. J Biol Chem 279:30983–30993

    PubMed  CAS  Google Scholar 

  147. Bourguignon LY, Earle C, Wong G, Spevak CC, Krueger K (2012) Stem cell marker (Nanog) and Stat-3 signaling promote microRNA-21 expression and chemoresistance in hyaluronan/CD44-activated head and neck squamous cell carcinoma cells. Oncogene 31:149–160

    PubMed  CAS  Google Scholar 

  148. Green DR, Evan GI (2002) A matter of life and death. Cancer Cell 1:19–30

    PubMed  CAS  Google Scholar 

  149. Lomonosova E, Chinnadurai G (2008) BH3-only proteins in apoptosis and beyond: an overview. Oncogene 27(Suppl 1):S2–S19

    PubMed  CAS  Google Scholar 

  150. LeBrun DP, Warnke RA, Cleary ML (1993) Expression of Bcl-2 in fetal tissues suggests a role in morphogenesis. Am J Pathol 142:743–753

    PubMed  CAS  Google Scholar 

  151. Lu QL, Poulsom R, Wong L, Hanby AM (1993) Bcl-2 expression in adult and embryonic non-haematopoietic tissues. J Pathol 169:431–437

    PubMed  CAS  Google Scholar 

  152. Abe-Dohmae S, Harada N, Yamada K, Tanaka R (1993) Bcl-2 gene is highly expressed during neurogenesis in the central nervous system. Biochem Biophys Res Commun 191:915–921

    PubMed  CAS  Google Scholar 

  153. Merry DE, Veis DJ, Hickey WF, Korsmeyer SJ (1994) Bcl-2 protein expression is widespread in the developing nervous system and retained in the adult PNS. Development 120:301–311

    PubMed  CAS  Google Scholar 

  154. Kamada S, Shimono A, Shinto Y, Tsujimura T, Takahashi T, Noda T, Kitamura Y, Kondoh H, Tsujimoto Y (1995) Bcl-2 deficiency in mice leads to pleiotropic abnormalities: accelerated lymphoid cell death in thymus and spleen, polycystic kidney, hair hypopigmentation, and distorted small intestine. Cancer Res 55:354–359

    PubMed  CAS  Google Scholar 

  155. Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ (1993) Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75:229–240

    PubMed  CAS  Google Scholar 

  156. Middleton G, Pinon LG, Wyatt S, Davies AM (1998) Bcl-2 accelerates the maturation of early sensory neurons. J Neurosci 18:3344–3350

    PubMed  CAS  Google Scholar 

  157. Bernier PJ, Parent A (1998) Bcl-2 protein as a marker of neuronal immaturity in postnatal primate brain. J Neurosci 18:2486–2497

    PubMed  CAS  Google Scholar 

  158. Zhang KZ, Westberg JA, Holtta E, Andersson LC (1996) Bcl2 regulates neural differentiation. Proc Natl Acad Sci U S A 93:4504–4508

    PubMed  CAS  Google Scholar 

  159. Wang S, Rosengren L, Hamberger A, Haglid K (2001) Antisense inhibition of Bcl-2 expression induces retinoic acid-mediated cell death during differentiation of human NT2N neurons. J Neurochem 76:1089–1098

    PubMed  CAS  Google Scholar 

  160. Niizuma H, Nakamura Y, Ozaki T, Nakanishi H, Ohira M, Isogai E, Kageyama H, Imaizumi M, Nakagawara A (2006) Bcl-2 is a key regulator for the retinoic acid-induced apoptotic cell death in neuroblastoma. Oncogene 25:5046–5055

    PubMed  CAS  Google Scholar 

  161. Sato N, Hotta K, Waguri S, Nitatori T, Tohyama K, Tsujimoto Y, Uchiyama Y (1994) Neuronal differentiation of PC12 cells as a result of prevention of cell death by Bcl-2. J Neurobiol 25:1227–1234

    PubMed  CAS  Google Scholar 

  162. Suzuki A, Tsutomi Y (1998) Bcl-2 accelerates the neuronal differentiation: new evidence approaching to the biofunction of Bcl-2 in the neuronal system. Brain Res 801:59–66

    PubMed  CAS  Google Scholar 

  163. Eom DS, Choi WS, Oh YJ (2004) Bcl-2 enhances neurite extension via activation of c-Jun N-terminal kinase. Biochem Biophys Res Commun 314:377–381

    PubMed  CAS  Google Scholar 

  164. Trouillas M, Saucourt C, Duval D, Gauthereau X, Thibault C, Dembele D, Feraud O, Menager J, Rallu M, Pradier L, Boeuf H (2008) Bcl-2, a transcriptional target of p38alpha, is critical for neuronal commitment of mouse embryonic stem cells. Cell Death Differ 15:1450–1459

    PubMed  CAS  Google Scholar 

  165. Wei L, Cui L, Snider BJ, Rivkin M, Yu SS, Lee CS, Adams LD, Gottlieb DI, Johnson EM Jr, Yu SP, Choi DW (2005) Transplantation of embryonic stem cells overexpressing Bcl-2 promotes functional recovery after transient cerebral ischemia. Neurobiol Dis 19:183–193

    PubMed  CAS  Google Scholar 

  166. Gonzalez-Garcia M, Garcia I, Ding L, O'Shea S, Boise LH, Thompson CB, Nunez G (1995) Bcl-x is expressed in embryonic and postnatal neural tissues and functions to prevent neuronal cell death. Proc Natl Acad Sci U S A 92:4304–4308

    PubMed  CAS  Google Scholar 

  167. Krajewska M, Mai JK, Zapata JM, Ashwell KW, Schendel SL, Reed JC, Krajewski S (2002) Dynamics of expression of apoptosis-regulatory proteins Bid, Bcl-2, Bcl-x, Bax and Bak during development of murine nervous system. Cell Death Differ 9:145–157

    PubMed  CAS  Google Scholar 

  168. Motoyama N, Wang F, Roth KA, Sawa H, Nakayama K, Nakayama K, Negishi I, Senju S, Zhang Q, Fujii S et al (1995) Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267:1506–1510

    PubMed  CAS  Google Scholar 

  169. Parsadanian AS, Cheng Y, Keller-Peck CR, Holtzman DM, Snider WD (1998) Bcl-xL is an antiapoptotic regulator for postnatal CNS neurons. J Neurosci 18:1009–1019

    PubMed  CAS  Google Scholar 

  170. Liste I, Garcia-Garcia E, Martinez-Serrano A (2004) The generation of dopaminergic neurons by human neural stem cells is enhanced by Bcl-xL, both in vitro and in vivo. J Neurosci 24:10786–10795

    PubMed  CAS  Google Scholar 

  171. Shim JW, Koh HC, Chang MY, Roh E, Choi CY, Oh YJ, Son H, Lee YS, Studer L, Lee SH (2004) Enhanced in vitro midbrain dopamine neuron differentiation, dopaminergic function, neurite outgrowth, and 1-methyl-4-phenylpyridium resistance in mouse embryonic stem cells overexpressing Bcl-xL. J Neurosci 24:843–852

    PubMed  CAS  Google Scholar 

  172. Chang MY, Sun W, Ochiai W, Nakashima K, Kim SY, Park CH, Kang JS, Shim JW, Jo AY, Kang CS, Lee YS, Kim JS, Lee SH (2007) Bcl-xL/Bax proteins direct the fate of embryonic cortical precursor cells. Mol Cell Biol 27:4293–4305

    PubMed  CAS  Google Scholar 

  173. Savitt JM, Jang SS, Mu W, Dawson VL, Dawson TM (2005) Bcl-x is required for proper development of the mouse substantia nigra. J Neurosci 25:6721–6728

    PubMed  CAS  Google Scholar 

  174. Liste I, Garcia-Garcia E, Bueno C, Martinez-Serrano A (2007) Bcl-xL modulates the differentiation of immortalized human neural stem cells. Cell Death Differ 14:1880–1892

    PubMed  CAS  Google Scholar 

  175. Sauvageot CM, Stiles CD (2002) Molecular mechanisms controlling cortical gliogenesis. Curr Opin Neurobiol 12:244–249

    PubMed  CAS  Google Scholar 

  176. Vekrellis K, McCarthy MJ, Watson A, Whitfield J, Rubin LL, Ham J (1997) Bax promotes neuronal cell death and is downregulated during the development of the nervous system. Development 124:1239–1249

    PubMed  CAS  Google Scholar 

  177. Guillemain I, Gaboyard S, Fontes G, Saunier M, Privat A, Patey G (2000) Differential expression of Bcl-2-related proteins in differentiating NT2 cells. Neuroreport 11:1421–1425

    PubMed  CAS  Google Scholar 

  178. Bunk E, König H-G, Bernas T, Engel T, Henshall D, Kirby B, Prehn J (2010) BH3-only proteins Bim and PUMA in the regulation of survival and neuronal differentiation of newly generated cells in the adult mouse hippocampus. Cell Death Dis 1:1–9

    Google Scholar 

  179. Waterhouse NJ, Sedelies KA, Browne KA, Wowk ME, Newbold A, Sutton VR, Clarke CJ, Oliaro J, Lindemann RK, Bird PI, Johnstone RW, Trapani JA (2005) A central role for Bid in granzyme B-induced apoptosis. J Biol Chem 280:4476–4482

    PubMed  CAS  Google Scholar 

  180. Wang T, Lee MH, Johnson T, Allie R, Hu L, Calabresi PA, Nath A (2010) Activated T-cells inhibit neurogenesis by releasing granzyme B: rescue by Kv1.3 blockers. J Neurosci 30:5020–5027

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank all the members of the laboratory for critical reading of the manuscript. This study is supported by grant PTDC/SAU-NMC/117877/2010 from Fundação para a Ciência e a Tecnologia, Lisbon, Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Solá.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solá, S., Aranha, M.M. & Rodrigues, C.M.P. Driving Apoptosis-relevant Proteins Toward Neural Differentiation. Mol Neurobiol 46, 316–331 (2012). https://doi.org/10.1007/s12035-012-8289-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-012-8289-2

Keywords

Navigation