Skip to main content

Advertisement

Log in

TWEAK and the Central Nervous System

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a member of the tumor necrosis factor superfamily that acts on responsive cells via binding to a cell surface receptor named fibroblast growth factor-inducible 14 (Fn14). TWEAK can regulate numerous cellular responses in vitro and in vivo. Recent studies have indicated that TWEAK and Fn14 are expressed in the central nervous system (CNS), and that in response to a variety of stimuli, including cerebral ischemia, there is an increase in TWEAK and Fn14 expression in perivascular astrocytes, microglia, endothelial cells, and neurons with subsequent increase in the permeability of the blood–brain barrier (BBB) and cell death. Furthermore, there is a growing body of evidence indicating that TWEAK induces the activation of the NF-κB in the CNS with release of proinflammatory cytokines and matrix metalloproteinases. In addition, inhibition of TWEAK activity by either treatment with a Fn14-Fc fusion protein or neutralizing anti-TWEAK antibodies has shown therapeutic efficacy in animal models of ischemic stroke, cerebral edema, and multiple sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ware CF (2003) The TNF superfamily. Cytokine Growth Factor Rev 14:181–184

    Article  PubMed  CAS  Google Scholar 

  2. Wiley SR, Winkles JA (2003) TWEAK, a member of the TNF superfamily, is a multifunctional cytokine that binds the TweakR/Fn14 receptor. Cytokine Growth Factor Rev 14:241–249

    Article  PubMed  CAS  Google Scholar 

  3. Juedes AE, Hjelmstrom P, Bergman CM, Neild AL, Ruddle NH (2000) Kinetics and cellular origin of cytokines in the central nervous system: insight into mechanisms of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis. J Immunol 164:419–426

    PubMed  CAS  Google Scholar 

  4. Feuerstein GZ, Wang X, Barone FC (1997) Inflammatory gene expression in cerebral ischemia and trauma. Potential new therapeutic targets. Ann N Y Acad Sci 825:179–93:179–193

    Google Scholar 

  5. Kawakita T, Shiraki K, Yamanaka Y, Yamaguchi Y, Saitou Y, Enokimura N, Yamamoto N, Okano H, Sugimoto K, Murata K et al (2004) Functional expression of TWEAK in human hepatocellular carcinoma: possible implication in cell proliferation and tumor angiogenesis. Biochem Biophys Res Commun 318:726–733

    Article  PubMed  CAS  Google Scholar 

  6. Kim SH, Kang YJ, Kim WJ, Woo DK, Lee Y, Kim DI, Park YB, Kwon BS, Park JE, Lee WH (2004) TWEAK can induce pro-inflammatory cytokines and matrix metalloproteinase-9 in macrophages. Circ J 68:396–399

    Article  PubMed  CAS  Google Scholar 

  7. Kawakita T, Shiraki K, Yamanaka Y, Yamaguchi Y, Saitou Y, Enokimura N, Yamamoto N, Okano H, Sugimoto K, Murata K et al (2005) Functional expression of TWEAK in human colonic adenocarcinoma cells. Int J Oncol 26:87–93

    PubMed  CAS  Google Scholar 

  8. Maecker H, Varfolomeev E, Kischkel F, Lawrence D, LeBlanc H, Lee W, Hurst S, Danilenko D, Li J, Filvaroff E et al (2005) TWEAK attenuates the transition from innate to adaptive immunity. Cell 123:931–944

    Article  PubMed  CAS  Google Scholar 

  9. Felli N, Pedini F, Zeuner A, Petrucci E, Testa U, Conticello C, Biffoni M, Di CA, Winkles JA, Peschle C et al (2005) Multiple members of the TNF superfamily contribute to IFN-gamma-mediated inhibition of erythropoiesis. J Immunol 175:1464–1472

    PubMed  CAS  Google Scholar 

  10. Chacon MR, Richart C, Gomez JM, Megia A, Vilarrasa N, Fernandez-Real JM, Garcia-Espana A, Miranda M, Masdevall C, Ricard W et al (2006) Expression of TWEAK and its receptor Fn14 in human subcutaneous adipose tissue. Relationship with other inflammatory cytokines in obesity. Cytokine 33:129–137

    Article  PubMed  CAS  Google Scholar 

  11. Chicheportiche Y, Bourdon PR, Xu H, Hsu YM, Scott H, Hession C, Garcia I, Browning JL (1997) TWEAK, a new secreted ligand in the tumor necrosis factor family that weakly induces apoptosis. J Biol Chem 272:32401–32410

    Article  PubMed  CAS  Google Scholar 

  12. Marsters SA, Sheridan JP, Pitti RM, Brush J, Goddard A, Ashkenazi A (1998) Identification of a ligand for the death-domain-containing receptor Apo3. Curr Biol 8:525–528

    Article  PubMed  CAS  Google Scholar 

  13. Pradet-Balade B, Medema JP, Lopez-Fraga M, Lozano JC, Kolfschoten GM, Picard A, Martinez A, Garcia-Sanz JA, Hahne M (2002) An endogenous hybrid mRNA encodes TWE-PRIL, a functional cell surface TWEAK-APRIL fusion protein. EMBO J 21:5711–5720

    Article  PubMed  CAS  Google Scholar 

  14. Nakayama M, Kayagaki N, Yamaguchi N, Okumura K, Yagita H (2000) Involvement of TWEAK in interferon gamma-stimulated monocyte cytotoxicity. J Exp Med 192:1373–1380

    Article  PubMed  CAS  Google Scholar 

  15. Mijatovic T, Houzet L, Defrance P, Droogmans L, Huez G, Kruys V (2000) Tumor necrosis factor-alpha mRNA remains unstable and hypoadenylated upon stimulation of macrophages by lipopolysaccharides. Eur J Biochem 267:6004–6012

    Article  PubMed  CAS  Google Scholar 

  16. Kolfschoten GM, Pradet-Balade B, Hahne M, Medema JP (2003) TWE-PRIL; a fusion protein of TWEAK and APRIL. Biochem Pharmacol 66:1427–1432

    Article  PubMed  CAS  Google Scholar 

  17. Meighan-Mantha RL, Hsu DK, Guo Y, Brown SA, Feng SL, Peifley KA, Alberts GF, Copeland NG, Gilbert DJ, Jenkins NA et al (1999) The mitogen-inducible Fn14 gene encodes a type I transmembrane protein that modulates fibroblast adhesion and migration. J Biol Chem 274:33166–33176

    Article  PubMed  CAS  Google Scholar 

  18. Wiley SR, Cassiano L, Lofton T, Davis-Smith T, Winkles JA, Lindner V, Liu H, Daniel TO, Smith CA, Fanslow WC (2001) A novel TNF receptor family member binds TWEAK and is implicated in angiogenesis. Immunity 15:837–846

    Article  PubMed  CAS  Google Scholar 

  19. Brown SA, Hanscom HN, Vu H, Brew SA, Winkles JA (2006) TWEAK binding to the Fn14 cysteine-rich domain depends on charged residues located in both the A1 and D2 modules. Biochem J 397:297–304

    Article  PubMed  CAS  Google Scholar 

  20. Brown SA, Richards CM, Hanscom HN, Feng SL, Winkles JA (2003) The Fn14 cytoplasmic tail binds tumour-necrosis-factor-receptor-associated factors 1, 2, 3 and 5 and mediates nuclear factor-kappaB activation. Biochem J 371:395–403

    Article  PubMed  CAS  Google Scholar 

  21. Tran NL, McDonough WS, Savitch BA, Sawyer TF, Winkles JA, Berens ME (2005) The tumor necrosis factor-like weak inducer of apoptosis (TWEAK)-fibroblast growth factor-inducible 14 (Fn14) signaling system regulates glioma cell survival via NFkappaB pathway activation and BCL-XL/BCL-W expression. J Biol Chem 280:3483–3492

    Article  PubMed  CAS  Google Scholar 

  22. Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501

    Article  PubMed  CAS  Google Scholar 

  23. Bossen C, Ingold K, Tardivel A, Bodmer JL, Gaide O, Hertig S, Ambrose C, Tschopp J, Schneider P (2006) Interactions of tumor necrosis factor (TNF) and TNF receptor family members in the mouse and human. J Biol Chem 281:13964–13971

    Article  PubMed  CAS  Google Scholar 

  24. Feng SL, Guo Y, Factor VM, Thorgeirsson SS, Bell DW, Testa JR, Peifley KA, Winkles JA (2000) The Fn14 immediate-early response gene is induced during liver regeneration and highly expressed in both human and murine hepatocellular carcinomas. Am J Pathol 156:1253–1261

    PubMed  CAS  Google Scholar 

  25. Xu H, Okamoto A, Ichikawa J, Ando T, Tasaka K, Masuyama K, Ogawa H, Yagita H, Okumura K, Nakao A (2004) TWEAK/Fn14 interaction stimulates human bronchial epithelial cells to produce IL-8 and GM-CSF. Biochem Biophys Res Commun 318:422–427

    Article  PubMed  CAS  Google Scholar 

  26. Campbell S, Burkly LC, Gao HX, Berman JW, Su L, Browning B, Zheng T, Schiffer L, Michaelson JS, Putterman C (2006) Proinflammatory effects of tweak/fn14 interactions in glomerular mesangial cells. J Immunol 176:1889–1898

    PubMed  CAS  Google Scholar 

  27. Tanabe K, Bonilla I, Winkles JA, Strittmatter SM (2003) Fibroblast growth factor-inducible-14 is induced in axotomized neurons and promotes neurite outgrowth. J Neurosci 23:9675–9686

    PubMed  CAS  Google Scholar 

  28. Potrovita I, Zhang W, Burkly L, Hahm K, Lincecum J, Wang MZ, Maurer MH, Rossner M, Schneider A, Schwaninger M (2004) Tumor necrosis factor-like weak inducer of apoptosis-induced neurodegeneration. J Neurosci 24:8237–8244

    Article  PubMed  CAS  Google Scholar 

  29. Yepes M, Brown SA, Moore EG, Smith EP, Lawrence DA, Winkles JA (2005) A soluble Fn14-Fc decoy receptor reduces infarct volume in a murine model of cerebral ischemia. Am J Pathol 166:511–520

    PubMed  CAS  Google Scholar 

  30. Tran NL, McDonough WS, Donohue PJ, Winkles JA, Berens TJ, Ross KR, Hoelzinger DB, Beaudry C, Coons SW, Berens ME (2003) The human Fn14 receptor gene is up-regulated in migrating glioma cells in vitro and overexpressed in advanced glial tumors. Am J Pathol 162:1313–1321

    PubMed  CAS  Google Scholar 

  31. Michaelson JS, Cho S, Browning B, Zheng TS, Lincecum JM, Wang MZ, Hsu YM, Burkly LC (2005) Tweak induces mammary epithelial branching morphogenesis. Oncogene 24:2613–2624

    Article  PubMed  CAS  Google Scholar 

  32. Jakubowski A, Ambrose C, Parr M, Lincecum JM, Wang MZ, Zheng TS, Browning B, Michaelson JS, Baetscher M, Wang B et al (2005) TWEAK induces liver progenitor cell proliferation. J Clin Invest 115:2330–2340

    Article  PubMed  CAS  Google Scholar 

  33. Han S, Yoon K, Lee K, Kim K, Jang H, Lee NK, Hwang K, Young LS (2003) TNF-related weak inducer of apoptosis receptor, a TNF receptor superfamily member, activates NF-kappa B through TNF receptor-associated factors. Biochem Biophys Res Commun 305:789–796

    Article  PubMed  CAS  Google Scholar 

  34. Inoue J, Ishida T, Tsukamoto N, Kobayashi N, Naito A, Azuma S, Yamamoto T (2000) Tumor necrosis factor receptor-associated factor (TRAF) family: adapter proteins that mediate cytokine signaling. Exp Cell Res 254:14–24

    Article  PubMed  CAS  Google Scholar 

  35. Donohue PJ, Richards CM, Brown SA, Hanscom HN, Buschman J, Thangada S, Hla T, Williams MS, Winkles JA (2003) TWEAK is an endothelial cell growth and chemotactic factor that also potentiates FGF-2 and VEGF-A mitogenic activity. Arterioscler Thromb Vasc Biol 23:594–600

    Article  PubMed  CAS  Google Scholar 

  36. Jin L, Nakao A, Nakayama M, Yamaguchi N, Kojima Y, Nakano N, Tsuboi R, Okumura K, Yagita H, Ogawa H (2004) Induction of RANTES by TWEAK/Fn14 interaction in human keratinocytes. J Invest Dermatol 122:1175–1179

    Article  PubMed  CAS  Google Scholar 

  37. Polek TC, Talpaz M, Darnay BG, Spivak-Kroizman T (2003) TWEAK mediates signal transduction and differentiation of RAW264.7 cells in the absence of Fn14/TweakR. Evidence for a second TWEAK receptor. J Biol Chem 278:32317–32323

    Article  PubMed  CAS  Google Scholar 

  38. Saitoh T, Nakayama M, Nakano H, Yagita H, Yamamoto N, Yamaoka S (2003) TWEAK induces NF-kappaB2 p100 processing and long lasting NF-kappaB activation. J Biol Chem 278:36005–36012

    Article  PubMed  CAS  Google Scholar 

  39. Dogra C, Changotra H, Mohan S, Kumar A (2006). Tumor necrosis factor-like weak inducer of apoptosis inhibits skeletal myogenesis through sustained activation of nuclear factor-kappaB and degradation of MyoD protein. J Biol Chem 281:10327–10336

    Article  PubMed  CAS  Google Scholar 

  40. Polavarapu R, Gongora MC, Winkles JA, Yepes M (2005) Tumor necrosis factor-like weak inducer of apoptosis increases the permeability of the neurovascular unit through nuclear factor-kappaB pathway activation. J Neurosci 25:10094–10100

    Article  PubMed  CAS  Google Scholar 

  41. Zhang X, Winkles JA, Gongora MC, Polavarapu R, Michaelson JS, Hahm K, Burkly L, Friedman M, Li XJ, Yepes M (2006) TWEAK-Fn14 pathway inhibition protects the integrity of the neurovascular unit during cerebral ischemia. J Cereb Blood Flow Metab 27:534–544

    Article  PubMed  CAS  Google Scholar 

  42. Vince JE, Silke J (2006) TWEAK shall inherit the earth. Cell Death Differ 13:1842–1844

    Article  PubMed  CAS  Google Scholar 

  43. Nakayama M, Ishidoh K, Kayagaki N, Kojima Y, Yamaguchi N, Nakano H, Kominami E, Okumura K, Yagita H (2002) Multiple pathways of TWEAK-induced cell death. J Immunol 168:734–743

    PubMed  CAS  Google Scholar 

  44. Schneider P, Schwenzer R, Haas E, Muhlenbeck F, Schubert G, Scheurich P, Tschopp J, Wajant H (1999) TWEAK can induce cell death via endogenous TNF and TNF receptor 1. Eur J Immunol 29:1785–1792

    Article  PubMed  CAS  Google Scholar 

  45. Nakayama M, Ishidoh K, Kojima Y, Harada N, Kominami E, Okumura K, Yagita H (2003) Fibroblast growth factor-inducible 14 mediates multiple pathways of TWEAK-induced cell death. J Immunol 170:341–348

    PubMed  CAS  Google Scholar 

  46. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660

    Article  PubMed  CAS  Google Scholar 

  47. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Article  PubMed  CAS  Google Scholar 

  48. Lynch CN, Wang YC, Lund JK, Chen YW, Leal JA, Wiley SR (1999) TWEAK induces angiogenesis and proliferation of endothelial cells. J Biol Chem 274:8455–8459

    Article  PubMed  CAS  Google Scholar 

  49. Jakubowski A, Browning B, Lukashev M, Sizing I, Thompson JS, Benjamin CD, Hsu YM, Ambrose C, Zheng TS, Burkly LC (2002) Dual role for TWEAK in angiogenic regulation. J Cell Sci 115:267–274

    PubMed  CAS  Google Scholar 

  50. Nathan C (2002) Points of control in inflammation. Nature 420:846–852

    Article  PubMed  CAS  Google Scholar 

  51. de Winther MP, Kanters E, Kraal G, Hofker MH (2005) Nuclear factor kappaB signaling in atherogenesis. Arterioscler Thromb Vasc Biol 25:904–914

    Article  PubMed  CAS  Google Scholar 

  52. Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    Article  PubMed  CAS  Google Scholar 

  53. Chicheportiche Y, Fossati-Jimack L, Moll S, Ibnou-Zekri N, Izui S (2000) Down-regulated expression of TWEAK mRNA in acute and chronic inflammatory pathologies. Biochem Biophys Res Commun 279:162–165

    Article  PubMed  CAS  Google Scholar 

  54. Saas P, Boucraut J, Walker PR, Quiquerez AL, Billot M, Desplat-Jego S, Chicheportiche Y, Dietrich PY (2000) TWEAK stimulation of astrocytes and the proinflammatory consequences. Glia 32:102–107

    Article  PubMed  CAS  Google Scholar 

  55. Desplat-Jego S, Varriale S, Creidy R, Terra R, Bernard D, Khrestchatisky M, Izui S, Chicheportiche Y, Boucraut J (2002) TWEAK is expressed by glial cells, induces astrocyte proliferation and increases EAE severity. J Neuroimmunol 133:116–123

    Article  PubMed  CAS  Google Scholar 

  56. Campbell S, Michaelson J, Burkly L, Putterman C (2004) The role of TWEAK/Fn14 IN the pathogenesis of inflammation and systemic autoimmunity. Front Biosci 9:2273–2284

    Article  PubMed  CAS  Google Scholar 

  57. Desplat-Jego S, Creidy R, Varriale S, Allaire N, Luo Y, Bernard D, Hahm K, Burkly L, Boucraut J (2005) Anti-TWEAK monoclonal antibodies reduce immune cell infiltration in the central nervous system and severity of experimental autoimmune encephalomyelitis. Clin Immunol 117:15–23

    Article  PubMed  CAS  Google Scholar 

  58. Perper SJ, Browning B, Burkly LC, Weng S, Gao C, Giza K, Su L, Tarilonte L, Crowell T, Rajman L et al (2006) TWEAK is a novel arthritogenic mediator. J Immunol 177:2610–2620

    PubMed  CAS  Google Scholar 

  59. Chen LF, Greene WC (2004) Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol 5:392–401

    Article  PubMed  CAS  Google Scholar 

  60. Shishodia S, Aggarwal BB (2004) Nuclear factor-kappaB activation mediates cellular transformation, proliferation, invasion angiogenesis and metastasis of cancer. Cancer Treat Res 119:139–173

    Article  PubMed  CAS  Google Scholar 

  61. Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18:6853–6866

    Article  PubMed  CAS  Google Scholar 

  62. Thorvaldsen P, Asplund K, Kuulasmaa K, Rajakangas AM, Schroll M (1995) Stroke incidence, case fatality, and mortality in the WHO MONICA project. World health organization monitoring trends and determinants in cardiovascular disease. Stroke 26:361–367

    PubMed  CAS  Google Scholar 

  63. World Health Organization (2002) World health report 2002: reducing risks, promoting healthy life. WHO, Geneva

    Google Scholar 

  64. Hakim AM (1987) The cerebral ischemic penumbra. Can J Neurol Sci 14:557–559

    PubMed  CAS  Google Scholar 

  65. del Zoppo GJ, Mabuchi T (2003) Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab 23:879–894

    Article  PubMed  Google Scholar 

  66. Garcia JH, Lossinsky AS, Kauffman FC, Conger KA (1978) Neuronal ischemic injury: light microscopy, ultrastructure and biochemistry. Acta Neuropathol (Berl) 43:85–95

    Article  CAS  Google Scholar 

  67. Yepes M, Sandkvist M, Moore EG, Bugge TH, Strickland DK, Lawrence DA (2003) Tissue-type plasminogen activator induces opening of the blood–brain barrier via the LDL receptor-related protein. J Clin Invest 112:1533–1540

    Article  PubMed  CAS  Google Scholar 

  68. Rieckmann P, Engelhardt B (2003) Building up the blood–brain barrier. Nat Med 9:828–829

    Article  PubMed  CAS  Google Scholar 

  69. Blamire AM, Anthony DC, Rajagopalan B, Sibson NR, Perry VH, Styles P (2000) Interleukin-1beta -induced changes in blood–brain barrier permeability, apparent diffusion coefficient, and cerebral blood volume in the rat brain: a magnetic resonance study. J Neurosci 20:8153–8159

    PubMed  CAS  Google Scholar 

  70. Schneider A, Martin-Villalba A, Weih F, Vogel J, Wirth T, Schwaninger M (1999) NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nat Med 5:554–559

    Article  PubMed  CAS  Google Scholar 

  71. Zhang W, Potrovita I, Tarabin V, Herrmann O, Beer V, Weih F, Schneider A, Schwaninger M (2005) Neuronal activation of NF-kappaB contributes to cell death in cerebral ischemia. J Cereb Blood Flow Metab 25:30–40

    Article  PubMed  Google Scholar 

  72. Xu L, Zhan Y, Wang Y, Feuerstein GZ, Wang X (2002) Recombinant adenoviral expression of dominant negative IkappaBalpha protects brain from cerebral ischemic injury. Biochem Biophys Res Commun 299:14–17

    Article  PubMed  CAS  Google Scholar 

  73. Yu Z, Zhou D, Bruce-Keller AJ, Kindy MS, Mattson MP (1999) Lack of the p50 subunit of nuclear factor-kappaB increases the vulnerability of hippocampal neurons to excitotoxic injury. J Neurosci 19:8856–8865

    PubMed  CAS  Google Scholar 

  74. Cheng B, Christakos S, Mattson MP (1994) Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis. Neuron 12:139–153

    Article  PubMed  CAS  Google Scholar 

  75. Cunningham LA, Wetzel M, Rosenberg GA (2005) Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia 50:329–339

    Article  PubMed  Google Scholar 

  76. Rosenberg GA, Estrada EY, Dencoff JE, Stetler-Stevenson WG (1995) Tumor necrosis factor-alpha-induced gelatinase B causes delayed opening of the blood–brain barrier: an expanded therapeutic window. Brain Res 703:151–155

    Article  PubMed  CAS  Google Scholar 

  77. Rosenberg GA, Navratil M, Barone F, Feuerstein G (1996) Proteolytic cascade enzymes increase in focal cerebral ischemia in rat. J Cereb Blood Flow Metab 16:360–366

    Article  PubMed  CAS  Google Scholar 

  78. Rosenberg GA, Estrada E, Kelley RO, Kornfeld M (1993) Bacterial collagenase disrupts extracellular matrix and opens blood–brain barrier in rat. Neurosci Lett 160:117–119

    Article  PubMed  CAS  Google Scholar 

  79. Rosenberg GA (2002) Matrix metalloproteinases in neuroinflammation. Glia 39:279–291

    Article  PubMed  Google Scholar 

  80. Bond M, Fabunmi RP, Baker AH, Newby AC (1998) Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-kappa B. FEBS Lett 435:29–34

    Article  PubMed  CAS  Google Scholar 

  81. Asahi M, Asahi K, Jung JC, del Zoppo GJ, Fini ME, Lo EH (2000) Role for matrix metalloproteinase 9 after focal cerebral ischemia: effects of gene knockout and enzyme inhibition with BB-94. J Cereb Blood Flow Metab 20:1681–1689

    Article  PubMed  CAS  Google Scholar 

  82. Asahi M, Wang X, Mori T, Sumii T, Jung JC, Moskowitz MA, Fini ME, Lo EH (2001) Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood–brain barrier and white matter components after cerebral ischemia. J Neurosci 21:7724–7732

    PubMed  CAS  Google Scholar 

  83. Risau W, Wolburg H (1990) Development of the blood–brain barrier. Trends Neurosci 13:174–178

    Article  PubMed  CAS  Google Scholar 

  84. Wolburg H, Neuhaus J, Kniesel U, Krauss B, Schmid EM, Ocalan M, Farrell C, Risau W (1994) Modulation of tight junction structure in blood–brain barrier endothelial cells. Effects of tissue culture, second messengers and cocultured astrocytes. J Cell Sci 107:1347–1357

    PubMed  CAS  Google Scholar 

  85. Fukuda S, Fini CA, Mabuchi T, Koziol JA, Eggleston LL Jr, del Zoppo GJ (2004) Focal cerebral ischemia induces active proteases that degrade microvascular matrix. Stroke 35:998–1004

    Article  PubMed  CAS  Google Scholar 

  86. Yepes M, Sandkvist M, Wong MK, Coleman TA, Smith E, Cohan SL, Lawrence DA (2000) Neuroserpin reduces cerebral infarct volume and protects neurons from ischemia-induced apoptosis. Blood 96:569–576

    PubMed  CAS  Google Scholar 

  87. Gu Z, Cui J, Brown S, Fridman R, Mobashery S, Strongin AY, Lipton SA (2005) A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J Neurosci 25:6401–6408

    Article  PubMed  CAS  Google Scholar 

  88. St-Pierre Y, Couillard J, Van TC (2004) Regulation of MMP-9 gene expression for the development of novel molecular targets against cancer and inflammatory diseases. Expert Opin Ther Targets 8:473–489

    Article  PubMed  CAS  Google Scholar 

  89. Kurtzke JF (1994) Clinical definition for multiple sclerosis treatment trials. Ann Neurol 36(Suppl):S73–S79

    Article  PubMed  Google Scholar 

  90. Hafler DA (2004) Multiple sclerosis. J Clin Invest 113:788–794

    Article  PubMed  CAS  Google Scholar 

  91. Lucchinetti CF, Bruck W, Rodriguez M, Lassmann H (1996) Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol 6:259–274

    PubMed  CAS  Google Scholar 

  92. Bernard CC, Johns TG, Slavin A, Ichikawa M, Ewing C, Liu J, Bettadapura J (1997) Myelin oligodendrocyte glycoprotein: a novel candidate autoantigen in multiple sclerosis. J Mol Med 75:77–88

    Article  PubMed  CAS  Google Scholar 

  93. Hofman FM, Hinton DR, Johnson K, Merrill JE (1989) Tumor necrosis factor identified in multiple sclerosis brain. J Exp Med 170:607–612

    Article  PubMed  CAS  Google Scholar 

  94. Rieckmann P, Albrecht M, Kitze B, Weber T, Tumani H, Broocks A, Luer W, Helwig A, Poser S (1995) Tumor necrosis factor-alpha messenger RNA expression in patients with relapsing-remitting multiple sclerosis is associated with disease activity. Ann Neurol 37:82–88

    Article  PubMed  CAS  Google Scholar 

  95. Mueller AM, Pedre X, Kleiter I, Hornberg M, Steinbrecher A, Giegerich G (2005) Targeting fibroblast growth factor-inducible-14 signaling protects from chronic relapsing experimental autoimmune encephalomyelitis. J Neuroimmunol 159:55–65

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research in the authors’ laboratory is supported in part by NIH Grant NS-49478 (Manuel Yepes). The author wants to thank Dr. Jeffrey A. Winkles for critically reviewing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Yepes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yepes, M. TWEAK and the Central Nervous System. Mol Neurobiol 35, 255–265 (2007). https://doi.org/10.1007/s12035-007-0024-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-007-0024-z

Keywords

Navigation