Skip to main content

Advertisement

Log in

Regulation of Appetite, Body Composition, and Metabolic Hormones by Vasoactive Intestinal Polypeptide (VIP)

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Vasoactive intestinal peptide (VIP) is a 28-amino acid neuropeptide that belongs to the secretin-glucagon superfamily of peptides and has 68 % homology with PACAP. VIP is abundantly expressed in the central and peripheral nervous system and in the gastrointestinal tract, where it exercises several physiological functions. Previously, it has been reported that VIP regulates feeding behavior centrally in different species of vertebrates such as goldfishes, chicken and rodents. Additional studies are necessary to analyze the role of endogenous VIP on the regulation of appetite/satiety, feeding behavior, metabolic hormones, body mass composition and energy balance. The aim of the study was to elucidate the physiological pathways by which VIP regulates appetite/satiety, feeding behavior, metabolic hormones, and body mass composition. VIP deficient (VIP −/−) and age-matched wild-type (WT) littermates were weekly monitored from 5 to 22 weeks of age using a whole body composition EchoMRI analyzer. Food intake and feeding behavior were analyzed using the BioDAQ automated monitoring system. Plasma levels of metabolic hormones including active-ghrelin, GLP-1, leptin, PYY, pancreatic polypeptide (PP), adiponectin, and insulin were measured in fasting as well as in postprandial conditions. The genetic lack of VIP led to a significant reduction of body weight and fat mass and to an increase of lean mass as the mice aged. Additionally, VIP−/− mice had a disrupted pattern of circadian feeding behavior resulting in an abolished regular nocturnal/diurnal feeding. These changes were associated with an altered secretion of adiponectin, GLP-1, leptin, PYY and insulin in VIP−/− mice. Our data demonstrates that endogenous VIP is involved in the control of appetite/satiety, feeding behavior, body mass composition and in the secretion of six different key regulatory metabolic hormones. VIP plays a key role in the regulation of body phenotype by significantly enhancing body weight and fat mass accumulation. Therefore, VIP signaling is critical for the modulation of appetite/satiety and body mass phenotype and is a potential target for future treatment of obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adeghate E, Ponery AS, Köves K (2000) Distribution of vasoactive intestinal polypeptide and its effect on glucagon secretion from normal and diabetic pancreatic tissue fragments in rat. Ann N Y Acad Sci 921:434–437

    Article  CAS  PubMed  Google Scholar 

  • Ahrén B, Lundquist I (1981) Effects of vasoactive intestinal polypeptide (VIP), secretin and gastrin on insulin secretion in the mouse. Diabetologia 20(1):54–59

    Article  PubMed  Google Scholar 

  • Akesson L, Ahrén B, Edgren G, Degerman E (2005) VPAC2-R mediates the lipolytic effects of pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal polypeptide in primary rat adipocytes. Endocrinology 146(2):744–750

    Article  CAS  PubMed  Google Scholar 

  • Alexander LD, Evans K, Sander LD (1995) A possible involvement of VIP in feeding-induced secretion of ACTH and corticosterone in the rat. Physiol Behav 58(2):409–413

    Article  CAS  PubMed  Google Scholar 

  • Asnicar MA, Köster A, Heiman ML et al (2002) Vasoactive intestinal polypeptide/pituitary adenylate cyclase-activating peptide receptor 2 deficiency in mice results in growth retardation and increased basal metabolic rate. Endocrinology 143(10):3994–4006

    Article  CAS  PubMed  Google Scholar 

  • Bado A, Levasseur S, Attoub S et al (1998) The stomach is a source of leptin. Nature 394(6695):790–793

    Article  CAS  PubMed  Google Scholar 

  • Ballantyne GH, Goldenring JR, Savoca PE et al (1993) Cyclic AMP-mediated release of peptide YY (PYY) from the isolated perfused rabbit distal colon. Regul Pept 47(2):117–126

    Article  CAS  PubMed  Google Scholar 

  • Barsh GS, Farooqi IS, O’Rahilly S (2000) Genetics of body-weight regulation. Nature 404(6778):644–651

    CAS  PubMed  Google Scholar 

  • Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330(6009):1349–1354

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bataille D, Freychet P, Rosselin G (1974) Interactions of glucagon, gut glucagon, vasoactive intestinal polypeptide and secretin with liver and fat cell plasma membranes: binding to specific sites and stimulation of adenylate cyclase. Endocrinology 95(3):713–721

    Article  CAS  PubMed  Google Scholar 

  • Bechtold DA, Brown TM, Luckman SM, Piggins HD (2008) Metabolic rhythm abnormalities in mice lacking VIP-VPAC2 signaling. Am J Physiol Regul Integr Comp Physiol 294(2):R344–R351

    Article  CAS  PubMed  Google Scholar 

  • Berg AH, Combs TP, Scherer PE (2002) ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends Endocrinol Metab 13(2):84–89

    Article  CAS  PubMed  Google Scholar 

  • Bloom SR, Polak JM, Pearse AG (1973) Vasoactive intestinal peptide and watery-diarrhoea syndrome. Lancet 2:14–16

    Article  CAS  PubMed  Google Scholar 

  • Boeckxstaens GE, Pelckmans PA, De Man JG, Bult H, Herman AG, Van Maercke YM (1992) Evidence for a differential release of nitric oxide and vasoactive intestinal polypeptide by nonadrenergic noncholinergic nerves in the rat gastric fundus. Arch Int Pharmacodyn Ther 318:107–115

    CAS  PubMed  Google Scholar 

  • Colwell CS, Michel S, Itri J et al (2003) Disrupted circadian rhythms in VIP- and PHI-deficient mice. Am J Physiol Regul Integr Comp Physiol 285(5):R939–R949

    Article  CAS  PubMed  Google Scholar 

  • Considine RV, Sinha MK, Heiman ML et al (1996) Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334(5):292–295

    Article  CAS  PubMed  Google Scholar 

  • D’Amato M, Currò D, Montuschi P, Ciabattoni G, Ragazzoni E, Lefebvre RA (1992) Release of vasoactive intestinal polypeptide from the rat gastric fundus. Br J Pharmacol 105(3):691–695

    Article  PubMed Central  PubMed  Google Scholar 

  • Date Y, Kojima M, Hosoda H et al (2000) Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141(11):4255–4261

    CAS  PubMed  Google Scholar 

  • Delgado M, Martinez C, Johnson MC, Gomariz RP, Ganea D (1996) Differential expression of vasoactive intestinal peptide receptors 1 and 2 (VIP-R1 and VIP-R2) mRNA in murine lymphocytes. J Neuroimmunol 68:27–38

    Article  CAS  PubMed  Google Scholar 

  • Dockray G (2004) Gut endocrine secretions and their relevance to satiety. Curr Opin Pharmacol 4(6):557–560

    Article  CAS  PubMed  Google Scholar 

  • Fabricius D, Karacay B, Shutt D et al (2011) Characterization of intestinal and pancreatic dysfunction in VPAC1-null mutant mouse. Pancreas 40(6):861–871

    Article  CAS  PubMed  Google Scholar 

  • Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395(6704):763–770

    Article  CAS  PubMed  Google Scholar 

  • Garber AJ (2011) Long-acting glucagon-like peptide 1 receptor agonists: a review of their efficacy and tolerability. Diabetes Care 34(Suppl 2):S279–S284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Girard BA, Lelievre V, Braas KM et al (2006) Noncompensation in peptide/receptor gene expression and distinct behavioral phenotypes in VIP- and PACAP-deficient mice. J Neurochem 99(2):499–513

    Article  CAS  PubMed  Google Scholar 

  • Gozes I, Schächter P, Shani Y, Giladi E (1988) Vasoactive intestinal peptide gene expression from embryos to aging rats. Neuroendocrinology 47(1):27–31

    Article  CAS  PubMed  Google Scholar 

  • Green CB, Douris N, Kojima S et al (2007) Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity. Proc Natl Acad Sci U S A 104(23):9888–9893

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Green CB, Takahashi JS, Bass J (2008) The meter of metabolism. Cell 134(5):728–742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Greenwood HC, Bloom SR, Murphy KG (2011) Peptides and their potential role in the treatment of diabetes and obesity. Rev Diabet Stud 8(3):355–368

    Article  PubMed Central  PubMed  Google Scholar 

  • Gressens P, Hill JM, Paindaveine B, Gozes I, Fridkin M, Brenneman DE (1994) Severe microcephaly induced by blockade of vasoactive intestinal peptide function in the primitive neuroepithelium of the mouse. J Clin Invest 94(5):2020–2027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harmar AJ, Fahrenkrug J, Gozes I et al (2012) Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br J Pharmacol 166(1):4–17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hawke Z, Ivanov TR, Bechtold DA, Dhillon H, Lowell BB, Luckman SM (2009) PACAP neurons in the hypothalamic ventromedial nucleus are targets of central leptin signaling. J Neurosci 29(47):14828–14835

    Article  CAS  PubMed  Google Scholar 

  • Hill JM, Mervis RF, Politi J et al (1994) Blockade of VIP during neonatal development induces neuronal damage and increases VIP and VIP receptors in brain. Ann N Y Acad Sci 739:211–225

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Shiosaka S, Sasaki Y et al (1984) Three-dimensional distribution of vasoactive intestinal polypeptide-containing structures in the rat stomach and their origins using whole mount tissue. J Neural Transm 59(3):195–205

    Article  CAS  PubMed  Google Scholar 

  • Lam KS (1991) Vasoactive intestinal peptide in the hypothalamus and pituitary. Neuroendocrinology 53(Suppl 1):45–51

    Article  CAS  PubMed  Google Scholar 

  • Lelievre V, Favrais G, Abad C et al (2007) Gastrointestinal dysfunction in mice with a targeted mutation in the gene encoding vasoactive intestinal polypeptide: a model for the study of intestinal ileus and Hirschsprung’s disease. Peptides 28(9):1688–1699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lim MA, Stack CM, Cuasay K et al (2008) Regardless of genotype, offspring of VIP-deficient female mice exhibit developmental delays and deficits in social behavior. Int J Dev Neurosci 26(5):423–434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu YJ, Guo YF, Zhang LS et al (2010) Biological pathway-based genome-wide association analysis identified the vasoactive intestinal peptide (VIP) pathway important for obesity. Obesity (Silver Spring) 18(12):2339–2346

    Article  CAS  Google Scholar 

  • Maffei M, Halaas J, Ravussin E et al (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1(11):1155–1161

    Article  CAS  PubMed  Google Scholar 

  • Marathe CS, Rayner CK, Jones KL, Horowitz M (2013) Glucagon-like peptides 1 and 2 in health and disease: a review. Peptides 44:75–86

    Article  CAS  PubMed  Google Scholar 

  • Martin B, Shin YK, White CM et al (2010) Vasoactive intestinal peptide-null mice demonstrate enhanced sweet taste preference, dysglycemia, and reduced taste bud leptin receptor expression. Diabetes 59(5):1143–1152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuda K, Maruyama K, Nakamachi T, Miura T, Uchiyama M, Shioda S (2005) Inhibitory effects of pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) on food intake in the goldfish, Carassius auratus. Peptides 26(9):1611–1616

    Article  CAS  PubMed  Google Scholar 

  • McGowan BM, Bloom SR (2004) Peptide YY and appetite control. Curr Opin Pharmacol 4(6):583–588

    Article  CAS  PubMed  Google Scholar 

  • Pedersen-Bjergaard U, Høst U, Kelbaek H et al (1996) Influence of meal composition on postprandial peripheral plasma concentrations of vasoactive peptides in man. Scand J Clin Lab Invest 56(6):497–503

    Article  CAS  PubMed  Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418(6901):935–941

    Article  CAS  PubMed  Google Scholar 

  • Richter WO, Robl H, Schwandt P (1989) Human glucagon and vasoactive intestinal polypeptide (VIP) stimulate free fatty acid release from human adipose tissue in vitro. Peptides 10(2):333–335

    Article  CAS  PubMed  Google Scholar 

  • Said SI, Mutt V (1970) Polypeptide with broad biological activity: isolation from small intestine. Science 169(3951):1217–1218

    Article  CAS  PubMed  Google Scholar 

  • Sheward WJ, Maywood ES, French KL et al (2007) Entrainment to feeding but not to light: circadian phenotype of VPAC2 receptor-null mice. Entrainment to feeding but not to light: circadian phenotype of VPAC2 receptor-null mice. J Neurosci 27(16):4351–4358

    Article  CAS  PubMed  Google Scholar 

  • Shimba S, Ishii N, Ohta Y et al (2005) Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc Natl Acad Sci U S A 102(34):12071–12076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stengel A, Goebel M, Wang L et al (2010) Activation of brain somatostatin 2 receptors stimulates feeding in mice: analysis of food intake microstructure. Physiol Behav 101(5):614–622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Straub SG, Sharp GW (1996) Mechanisms of action of VIP and PACAP in the stimulation of insulin release. Ann N Y Acad Sci 805:607–612

    Article  CAS  PubMed  Google Scholar 

  • Tachibana T, Saito S, Tomonaga S et al (2003) Intracerebroventricular injection of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibits feeding in chicks. Neurosci Lett 339(3):203–206

    Article  CAS  PubMed  Google Scholar 

  • Turek FW, Joshu C, Kohsaka A et al (2005) Obesity and metabolic syndrome in circadian clock mutant mice. Science 308(5724):1043–1045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vaudry D, Gonzalez BJ, Basille M, Yon L, Fournier A, Vaudry H (2000) Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol Rev 52(2):269–324

    CAS  PubMed  Google Scholar 

  • Vu JP, Wang HS, Germano PM, Pisegna JR (2011) Ghrelin in neuroendocrine tumors. Peptides 32(11):2340–2347

    Article  CAS  PubMed  Google Scholar 

  • Vu JP, Million M, Larauche M et al (2014) Inhibition of vasoactive intestinal polypeptide (VIP) induces resistance to dextran sodium sulfate (DSS)-induced colitis in mice. J Mol Neurosci 52(1):37–47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang HS, Oh DS, Ohning GV, Pisegna JR (2007) Elevated serum ghrelin exerts an orexigenic effect that may maintain body mass index in patients with metastatic neuroendocrine tumors. J Mol Neurosci 33(3):225–231

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Mojsov S (1996) Tissue specific expression of different human receptor types for pituitary adenylate cyclase activating polypeptide and vasoactive intestinal polypeptide: implications for their role in human physiology. J Neuroendocrinol 8(11):811–817

    Article  CAS  PubMed  Google Scholar 

  • Williams KW, Elmquist JK (2011) Lighting up the hypothalamus: coordinated control of feeding behavior. Nat Neurosci 14(3):277–278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woods SC, Seeley RJ, Porte D Jr, Schwartz MW (1998) Signals that regulate food intake and energy homeostasis. Science 280(5368):1378–1383

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi T, Kamon J, Waki H et al (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7(8):941–946

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Liu A, Weidenhammer A et al (2009) The role of mPer2 clock gene in glucocorticoid and feeding rhythms. Endocrinology 150(5):2153–2160

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zimmerman RP, Gates TS, Mantyh CR et al (1989) Vasoactive intestinal polypeptide receptor binding sites in the human gastrointestinal tract: localization by autoradiography. Neuroscience 31(3):771–783

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work received grant support from: Department of Veterans Affairs RR&D Merit Review (JRP); Department of Veterans Affairs RR&D Merit Review (PMG); NIH K01 DK088937 (ML); and Animal Core Services performed through CURE: Digestive Disease Research Center supported by NIH grant P30DK41301.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia M. Germano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, J.P., Larauche, M., Flores, M. et al. Regulation of Appetite, Body Composition, and Metabolic Hormones by Vasoactive Intestinal Polypeptide (VIP). J Mol Neurosci 56, 377–387 (2015). https://doi.org/10.1007/s12031-015-0556-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0556-z

Keywords

Navigation