Skip to main content
Log in

Nerve Sprouting Contributes to Increased Severity of Ventricular Tachyarrhythmias by Upregulating iGluRs in Rats with Healed Myocardial Necrotic Injury

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Sympathetic nerve sprouting in healed myocardial infarction (MI) has been associated with high incidences of lethal arrhythmias, but the underlying mechanisms are largely unknown. This study sought to test that sympathetic hyperinnervation and/or MI remodels the myocardial glutamate signaling and ultimately increases the severity of ventricular tachyarrhythmias. Myocardial necrotic injury (MNI) was created by liquid nitrogen freeze–thawing across an intact diaphragm to mimic MI. Cardiac sympathetic hyperinnervation was induced by chronic subcutaneous injection of 4-methylcatechol, a potent stimulator of nerve growth factor expression. The results showed that sympathetic hyperinnervation with or without MNI upregulated the myocardial expression of ionotropic glutamate receptors (iGluRs), including NMDA receptor (NMDAR) and AMPA receptor (AMPAR), and induced cardiomyocyte apoptosis. Intravenous infusion with either NMDA (12 mg/kg) or AMPA (15 mg/kg) triggered ventricular tachycardia and ventricular fibrillation in rats with healed MNI plus sympathetic hyperinnervation; these arrhythmias were prevented by respective antagonist of NMDAR or AMPAR. We conclude that MNI with sympathetic nerve sprouting upregulates the expression of NMDAR and AMPAR in the myocardium and this impact in turn enhances cardiac responses to stimulations of iGluRs and thus increases the incidence of ventricular tachyarrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bäckström T, Goiny M, Lockowandt U, Liska J, Franco-Cereceda A (2003) Cardiac outflow of amino acids and purines during myocardial ischemia and reperfusion. J Appl Physiol 94:1122–1128

    PubMed  Google Scholar 

  • Bai J, Ren C, Hao W et al (2008) Chemical sympathetic denervation, suppression of myocardial transient outward potassium current and ventricular fibrillation in the rat. Can J Physiol Pharmocol 86:700–709

    Article  CAS  Google Scholar 

  • Billman GE (2009) Cardiac autonomic neural remodeling and susceptibility to sudden cardiac death: effect of endurance exercise training. Am J Physiol Heart Circ Physiol 297:H1171–H1193

    Article  PubMed  CAS  Google Scholar 

  • Bounhoure JP, Galinier M, Boveda S, Albenque JP (2010) Ventricular arrhythmias, sudden death and heart failure. Bull Acad Natl Med 194:997–1007 (Article in French)

    PubMed  Google Scholar 

  • Burnashev N, Zhou Z, Neher E, Sakmann B (1995) Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J Physiol (Lond) 485:403–418

    CAS  Google Scholar 

  • Byun J, Huh JE, Park SJ et al (2000) Myocardial injury-induced fibroblast proliferation facilitates retroviral-mediated gene transfer to the rat heart in vivo. J Gene Med 2:2–10

    Article  PubMed  CAS  Google Scholar 

  • Cao JM, Chen LS, KenKnight BH et al (2000a) Nerve sprouting and sudden cardiac death. Circ Res 86:816–821

    Article  PubMed  CAS  Google Scholar 

  • Cao JM, Fishbein MC, Han JB et al (2000b) Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation 101:1060–1069

    Article  Google Scholar 

  • Chen PS, Chen LS, Cao JM et al (2001) Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. Cardiovasc Res 50:409–416

    Article  PubMed  CAS  Google Scholar 

  • Chen PS, Choi EK, Zhou S, Lin SF, Chen LS (2010) Cardiac neural remodeling and its role in arrhythmogenesis. Heart Rhythm 7:1512–1513

    Article  PubMed  Google Scholar 

  • Ciaccio EJ (2009) Reversal of neural and electrophysiologic remodeling in cardiac tissue. Heart Rhythm 6:76–77

    Article  PubMed  Google Scholar 

  • Gann D (1977) Ventricular tachycardia in a patient with the “Chinese restaurant syndrome”. South Med J 70:879–881

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Xu X, Pang J et al (2007) NMDA receptor activation induces mitochondrial dysfunction, oxidative stress and apoptosis in cultured neonatal rat cardiocyte. Physiol Res 56:559–569

    PubMed  CAS  Google Scholar 

  • Gill SS, Pulido OM, Mueller RW, McGuire PF (1998) Molecular and immunochemical characterization of the ionotropic glutamate receptors in the rat heart. Brain Res Bull 46:429–434

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Pulido OM, Mueller RW, McGuire PF (1999) Immunochemical localization of the metabotropic glutamate receptors in the rat heart. Brain Res Bull 48:143–146

    Article  PubMed  CAS  Google Scholar 

  • Goldberg LH (1982) Supraventricular tachyarrhythmia in association with the Chinese restaurant syndrome. Ann Emerg Med 11:333

    Article  PubMed  CAS  Google Scholar 

  • Hanaoka Y, Ohi T, Furukawa S, Furukawa Y, Hayashi K, Matsukura S (1992) Effect of 4-methylcatechol on sciatic nerve growth factor level and motor nerve conduction velocity in experimental diabetic neuropathic process in rats. Exp Neurol 115:292–296

    Article  PubMed  CAS  Google Scholar 

  • Ieda M, Fukuda K, Hisaka Y et al (2004) Endothelin-1 regulates cardiac sympathetic innervation in the rodent heart by controlling nerve growth factor expression. J Clin Invest 113:876–884

    PubMed  CAS  Google Scholar 

  • Kalin A, Usher-Smith J, Jones VJ, Huang CL, Sabir IN (2010) Cardiac arrhythmia: a simple conceptual framework. Trends Cardiovasc Med 20:103–107

    Article  PubMed  Google Scholar 

  • Lai AC, Wallner K, Cao JM, Chen LS, Karagueuzian HS, Fishbein MC, Chen PS, Sharifi BG (2000) Colocalization of tenascin and sympathetic nerves in a canine model of nerve sprouting and sudden cardiac death. J Cardiovasc Electrophysiol 11:1345–1351

    Google Scholar 

  • Levanti MB, Germanà A, de Carlos F, Ciriaco E, Vega JA, Germanà G (2006) Effects of increased nerve growth factor plasma levels on the expression of TrkA and p75 in rat testicles. J Anat 208:373–379

    Article  PubMed  CAS  Google Scholar 

  • MacDermott AB, Mayer ML, Westbrook GL, Smith SJ, Barker JL (1986) NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones. Nature 321:519–522

    Article  PubMed  CAS  Google Scholar 

  • Machado CR, Caliari MV, de Lana M, Tafuri WL (1998) Heart autonomic innervation during the acute phase of experimental American trypanosomiasis in the dog. Am J Trop Med Hyg 59:492–496

    PubMed  CAS  Google Scholar 

  • Matsui Y, Morimoto J, Uede T (2010) Role of matricellular proteins in cardiac tissue remodeling after myocardial infarction. World J Biol Chem 1:69–80

    Article  PubMed  Google Scholar 

  • Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130:1007S–1015S

    PubMed  CAS  Google Scholar 

  • Mill JG, Stefanon I, Dos Santos L, Baldo MP (2011) Remodeling in the ischemic heart: the stepwise progression for heart. Braz J Med Biol Res 44:890–898

    Article  PubMed  CAS  Google Scholar 

  • Morrison JF, Shehab S, Sheen R, Dhanasekaran S, Shaffiullah M, Mensah-Brown E (2008) Sensory and autonomic nerve changes in the monosodium glutamate-treated rat: a model of type II diabetes. Exp Physiol 93:213–222

    Article  PubMed  CAS  Google Scholar 

  • Oltvai ZN, Milliman CL, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619

    Article  PubMed  CAS  Google Scholar 

  • Pacifico A, Henry PD (2003) Structural pathways and prevention of heart failure and sudden death. J Cardiovasc Electrophysiol 14:764–775

    Article  PubMed  Google Scholar 

  • Ren C, Wang F, Li G et al (2008) Nerve sprouting suppresses myocardial Ito and IK1 channels and increases severity to ventricular fibrillation in rat. Auton Neurosci Basic Clin 144:22–29

    Article  CAS  Google Scholar 

  • Saita K, Ohi T, Hanaoka Y et al (1995) Effects of 4-methylcatechol, a stimulator of endogenous nerve growth factor synthesis, on experimental acrylamide-induced neuropathy in rats. Neurotoxicology 16:403–412

    PubMed  CAS  Google Scholar 

  • Sato T, Irie S, Krajewski S, Reed JC (1994) Cloning and sequencing of a cDNA encoding the rat Bcl-2 protein. Gene 140:291–292

    Article  PubMed  CAS  Google Scholar 

  • Seeber S, Becker K, Rau T, Eschenhagen T, Becker CM, Herkert M (2000) Transient expression of NMDA receptor subunit NR2B in the developing rat heart. J Neurochem 75:2472–2477

    Article  PubMed  CAS  Google Scholar 

  • Seeber S, Humeny A, Herkert M, Rau T, Eschenhagen T, Becker CM (2004) Formation of molecular complexes by N-methyl-d-aspartate receptor subunit NR2B and ryanodine receptor 2 in neonatal rat myocard. J Biol Chem 279:21062–21068

    Article  PubMed  CAS  Google Scholar 

  • Swanson GT, Sakai R (2009) Ligands for ionotropic glutamate receptors. Prog Mol Subcell Biol 46:123–157

    Article  PubMed  CAS  Google Scholar 

  • Tsai J, Cao JM, Zhou S et al (2002) T wave alternans as a predictor of spontaneous ventricular tachycardia in a canine model of sudden cardiac death. J Cardiovasc Electrophysiol 13:51–55

    Article  PubMed  Google Scholar 

  • Vracko R, Thorning D (1985) Freeze-thaw injury of rat heart across an intact diaphragm: a new model for the study of the response of myocardium to injury. Cardiovasc Res 19:76–84

    Article  PubMed  CAS  Google Scholar 

  • Wang HW, Chiou WY (2004) Sympathetic innervation of the tongue in rats. ORL J Otorhinolaryngol Relat Spec 66:16–20

    Article  PubMed  Google Scholar 

  • Zettler C, Rush RA (1993) Elevated concentrations of nerve growth factor in heart and mesenteric arteries of spontaneously hypertensive rats. Brain Res 614:15–20

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Cao JM, ZD Tebb et al (2001) Modulation of QT interval by cardiac sympathetic nerve sprouting and the mechanisms of ventricular arrhythmia in a canine model of sudden cardiac death. J Cardiovasc Electrophysiol 12:1068–1073

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Jung BC, Tan AY et al (2008) Spontaneous stellate ganglion nerve activity and ventricular arrhythmia in a canine model of sudden death. Heart Rhythm 5:131–139

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (31171088, 81000060, and 81071072), the Basic Research Funding (2008PY08 and 2010PY07), and a 973 program (2011CB503902) from the Ministry of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Min Cao.

Additional information

Cao JM and Gao X are both responsible authors of this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lü, J., Gao, X., Gu, J. et al. Nerve Sprouting Contributes to Increased Severity of Ventricular Tachyarrhythmias by Upregulating iGluRs in Rats with Healed Myocardial Necrotic Injury. J Mol Neurosci 48, 448–455 (2012). https://doi.org/10.1007/s12031-012-9720-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9720-x

Keywords

Navigation