Skip to main content

Advertisement

Log in

Lutein Inhibits the Function of the Transient Receptor Potential A1 Ion Channel in Different In Vitro and In Vivo Models

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Transient receptor potential (TRP) ion channels, such as TRP vanilloid 1 and ankyrin repeat domain 1 (TRPV1 and TRPA1), are expressed on primary sensory neurons. Lutein, a natural tetraterpene carotenoid, can be incorporated into membranes and might modulate TRP channels. Therefore, the effects of the water-soluble randomly methylated-ÎČ-cyclodextrin (RAMEB) complex of lutein were investigated on TRPV1 and TRPA1 activation. RAMEB–lutein (100 ΌM) significantly diminished Ca2+ influx to cultured rat trigeminal neurons induced by TRPA1 activation with mustard oil, but not by TRPV1 stimulation with capsaicin, as determined with microfluorimetry. Calcitonin gene-related peptide release from afferents of isolated tracheae evoked by mustard oil, but not by capsaicin, was inhibited by RAMEB–lutein. Mustard oil-induced neurogenic mouse ear swelling was also significantly decreased by 100 Όg/ml s.c. RAMEB–lutein pretreatment, while capsaicin-evoked edema was not altered. Myeloperoxidase activity indicating non-neurogenic granulocyte accumulation in the ear was not influenced by RAMEB–lutein in either case. It is concluded that lutein inhibits TRPA1, but not TRPV1 stimulation-induced responses on cell bodies and peripheral terminals of sensory neurons in vitro and in vivo. Based on these distinct actions and the carotenoid structure, the ability of lutein to modulate lipid rafts in the membrane around TRP channels can be suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • BĂĄnvölgyi Á, Pozsgai G, Brain SD et al (2004) Mustard oil induces a transient receptor potential vanilloid 1 receptor-independent neurogenic inflammation and a non-neurogenic cellular inflammatory component in mice. Neuroscience 125:449–459

    Article  PubMed  Google Scholar 

  • Bhatt DL (2008) Anti-inflammatory agents and antioxidants as a possible “Third Great Wave” in cardiovascular secondary prevention. Am J Cardiol 101:4D–13D

    Article  PubMed  CAS  Google Scholar 

  • Börzsei R, Pozsgai G, Bagoly T et al (2008) Inhibitory action of endomorphin-1 on sensory neuropeptide release and neurogenic inflammation in rats and mice. Neuroscience 152(1):82–88

    Article  PubMed  Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander H (1995) Carotenoids today and challenges for the future. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 1A. BirkhĂ€user, Basel, Boston, Berlin, pp 13–26

    Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander H (2008) Special molecules, special properties. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 4. BirkhĂ€user, Basel, Boston, Berlin, pp 1–6

    Chapter  Google Scholar 

  • Canfield LM, Hu X, White KM, Jacobsen NE, Mangelsdorf DJ (1999) ÎČ-Carotene oxidation products inhibit growth and cholesterol synthesis in breast cancer cells. 12th International Carotenoid Symposium, Cairns, Australia. Abstract 6A-4:191

    Google Scholar 

  • Cevikbas F, Steinhoff A, Homey B, Steinhoff M (2007) Neuroimmune interactions in allergic skin diseases. Curr Opin Allergy Clin Immunol 7(5):365–373

    Article  PubMed  CAS  Google Scholar 

  • Corbin J, MĂ©thot N, Wang HH, Baenziger JE, Blanton MP (1998) Secondary structure analysis of individual transmembrane segments of the nicotinic acetylcholine receptor by circular dichroism and Fourier transform infrared spectroscopy. J Biol Chem 273(2):771–777

    Article  PubMed  CAS  Google Scholar 

  • Dart C (2010) Lipid microdomains and the regulation of ion channel function. J Physiol 588:3169–3178

    Article  PubMed  CAS  Google Scholar 

  • Geppetti P, Materazzi S, Nicoletti P (2006) The transient receptor potential vanilloid 1: role in airway inflammation and disease. Eur J Pharmacol 533(1–3):207–214

    Article  PubMed  CAS  Google Scholar 

  • Geppetti P, Nassini R, Materazzi S, Benemei S (2008) The concept of neurogenic inflammation. BJU Int 101(Suppl 3):2–6

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Anoveros J, Nagata K (2007) Trpa1. Handb Exp Pharmacol 179:347–362

    Article  PubMed  CAS  Google Scholar 

  • HĂ€nninen O, Kaartinen K, Rauma AL et al (2000) Antioxidants in vegan diet and rheumatic disorders. Toxicology 155:45–53

    Article  PubMed  Google Scholar 

  • Helyes Z, PintĂ©r E, NĂ©meth J et al (2001) Anti-inflammatory effect of synthetic somatostatin analogs in the rat. Br J Pharmacol 134:1571–1579

    Article  PubMed  CAS  Google Scholar 

  • Helyes Z, PintĂ©r E, NĂ©meth J, SzolcsĂĄnyi J (2003) Pharmacological targets for the inhibition of neurogenic inflammation. Curr Med Chem 2:191–218

    CAS  Google Scholar 

  • Helyes Z, PintĂ©r E, NĂ©meth J et al (2006) Effects of the somatostatin receptor subtype 4 selective agonist J-2156 on sensory neuropeptide release and inflammatory reactions in rodents. Br J Pharmacol 149:405–415

    Article  PubMed  CAS  Google Scholar 

  • Helyes Z, PintĂ©r E, SzolcsĂĄnyi J (2009) In: KovĂĄcs M, Merchenthaler I (eds) Regulatory role of sensory neuropeptides in inflammation, in neuropeptides and peptide analogs, vol 7. Research Signpost, Kerala, India, pp 111–141

    Google Scholar 

  • HorvĂĄth Gy, MolnĂĄr P, Deli J et al (2009) Karotinoidok hatĂĄsĂĄnak vizsgĂĄlata neurogĂ©n gyulladĂĄsos folyamatokra in vivo egĂ©rmodellekben. Congressus Pharmaceuticus Hungaricus XIV. Budapest, Abstract (P-26). GyĂłgyszerĂ©szet Supplementum 11(Supl. I):S83

    Google Scholar 

  • HorvĂĄrth Gy, MolnĂĄr P, Farkas Á, SzabĂł LGy, Turcsi E, Deli J (2010) Separation and identification of carotenoids in flowers of Chelidonium majus L. and inflorescenses of Solidago canadensis L. Chromatographia Supplement 71:103–108

    Article  Google Scholar 

  • IvĂĄnyi R, NĂ©meth K, Visy J, Szeman J, Szente L, Simonyi M (2008) Water soluble carotenoid/CD complexes: preparation, characterization. The 14th International Cyclodextrins Symposium—Kyoto, Japan, Abstract book no. P1-29

  • Johnson EJ, Krinsky NI (2009) Carotenoids and coronary heart disease. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 1A. BirkhĂ€user, Basel, Boston, Berlin, pp 287–300

    Chapter  Google Scholar 

  • KemĂ©ny Á, HorvĂĄth Gy, MolnĂĄr P et al (2010a) Effects of carotenoids on skin inflammation in in vivo mice models. IBRO International Workshop, PĂ©cs. Abstract P4–16:26

    Google Scholar 

  • KemĂ©ny Á, ReglƑdi D, Cseharovszky R et al (2010b) Pituitary adenylate cyclase-activating polypeptide deficiency enhances oxazolone-induced allergic contact dermatitis in mice. J Mol Neurosci 42:443–449

    Article  PubMed  Google Scholar 

  • Krinsky NI (1989) Carotenoids in medicine. In: Krinsky NI, Mathews-Roth MM, Taylor RF (eds) Carotenoids: chemistry and biology, I. Plenum, New York, pp 279–291

    Google Scholar 

  • Krinsky NI (1998) The antioxidant and biological properties of the carotenoids. Annu NY Acad Sci 854:443–447

    Article  CAS  Google Scholar 

  • Krinsky NI, Johnson EJ (2005) Carotenoid actions and their relation to health and disease. Mol Aspects Med 26:459–516

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Huang W, Wu D, Priestley JV (2006) TRPV1, but not P2X, requires cholesterol for its function and membrane expression in rat nociceptors. Eur J Neurosci 24(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • Mayne ST, Wright ME, Cartmel B (2009) Epidemiology and intervention trials. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 5. BirkhĂ€user, Basel, Boston, Berlin, pp 191–210

    Chapter  Google Scholar 

  • McNulty H, Byun J, Lockwood SF, Jacob RF, Mason RP (2007) Differential effects of carotenoids on lipid peroxidation due to membrane interactions: X-ray diffraction analysis. Biochim Biophys Acta 1768:167–174

    Article  PubMed  CAS  Google Scholar 

  • McNulty H, Jacob RF, Mason RP (2008) Biologic activity of carotenoids related to distinct membrane physicochemical interactions. Am J Cardiol 101:20D–29D

    Article  PubMed  CAS  Google Scholar 

  • MolnĂĄr P, Kawase M, Motohashi N (2005) Isolation, crystallization and handling of carotenoids and (E/Z)-isomerization of carotenoids. In: Motohashi N (ed) Functional polyphenols and carotenoids with antioxidative action. RSFLASH, Kerala, pp 111–131, a review book series of Chem Pharm Sci

    Google Scholar 

  • Nilius B (2007) Transient receptor potential (TRP) cation channels: rewarding unique proteins. Bull MĂ©m Acad R MĂ©d Belg 162(3–4):244–253

    PubMed  Google Scholar 

  • Nishino H, Murakoshi M, Tokuda H, Satomi Y (2009) Cancer prevention by carotenoids. Arch Biochem Biophys 483:165–168

    Article  PubMed  CAS  Google Scholar 

  • Palozza P, Serini S, Ameruso M, Verdecchia S (2009) Modulation of intracellular signalling pathways by carotenoids. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 5. BirkhĂ€user, Basel, Boston, Berlin, pp 211–234

    Chapter  Google Scholar 

  • Pashkow FJ, Watumull DG, Campbell CL (2008) Astaxanthin: a novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am J Cardiol 101:58D–68D

    Article  PubMed  CAS  Google Scholar 

  • Pfander H (1992) Carotenoids: an overview in methods in enzymology, vol 213. Academic, New York, pp 3–31

    Google Scholar 

  • Quasim T, McMillan DC, Talwar D, Sattar N, O'Reilly J, Kinsella J (2003) Lower concentrations of carotenoids in the critically-ill patient are related to a systemic inflammatory response and increased lipid peroxidation. Clin Nutr 22(5):459–462

    Article  PubMed  CAS  Google Scholar 

  • Rock CL (2009) Carotenoids and cancer. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 5. BirkhĂ€user, Basel, Boston, Berlin, pp 269–286

    Chapter  Google Scholar 

  • Schiedt K, Liaaen-Jensen S (1995) Isolation and analysis. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids, vol 1A. BirkhĂ€user, Basel, Boston, Berlin, pp 109–144

    Google Scholar 

  • Schumacher MA (2010) Transient receptor potential channels in pain and inflammation: therapeutic opportunities. Pain Pract 10(3):185–200

    Article  PubMed  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  PubMed  CAS  Google Scholar 

  • Sjögren B, Svenningsson P (2007) Depletion of the lipid raft constituents, sphingomyelin and ganglioside, decreases serotonin binding at human 5-HT7(a) receptors in HeLa cells. Acta Physiol 190:47–53

    Article  Google Scholar 

  • SzolcsĂĄnyi J (2002) Capsaicin receptor as target molecule on nociceptors for development of novel analgesic agents. In: KĂ©ri G, TĂłth I (eds) Molecular pathomechanisms and new trends in drug research. Taylor and Francis, London, pp 319–333

    Chapter  Google Scholar 

  • SzolcsĂĄnyi J (2004) Forty years in capsaicin research for sensory pharmacology and physiology. Neuropeptides 38(6):377–384

    Article  PubMed  Google Scholar 

  • SzolcsĂĄnyi J (2008) Hot target on nociceptors: perspectives, caveats and unique features. Br J Pharmacol 155(8):1142–1144

    Article  PubMed  Google Scholar 

  • SzƑke É, Zs B, Csernoch L, CzĂ©h G, SzolcsĂĄnyi J (2000) Interacting effects of capsaicin and anandamide on intracellular calcium in sensory neurons. Neuroreport 11:1949–1952

    Article  PubMed  Google Scholar 

  • SzƑke É, Börzsei R, TĂłth DM et al (2010) Effect of lipid raft disruption on TRPV1 receptor activation of trigeminal sensory neurons and transfected cell line. Eur J Pharmacol 628(1–3):67–74

    Article  PubMed  Google Scholar 

  • Tapiero H, Townsend DM, Tew KD (2004) The role of carotenoids in the prevention of human pathologies. Biomed Pharmacother 58:100–110

    Article  PubMed  CAS  Google Scholar 

  • Wiƛniewska A, Draus J, Subczynski WK (2003) Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes. Cell Mol Biol Lett 8(1):147–159

    PubMed  Google Scholar 

  • Wisniewska A, Widomska J, Subczynski WK (2006) Carotenoid-membrane interactions in liposomes: effect of dipolar, monopolar, and nonpolar carotenoids. Acta Biochim Pol 53(3):475–484

    PubMed  CAS  Google Scholar 

  • Yaping Z, Wenli Y, Weile H, Ying Y (2003) Anti-inflammatory and anticoagulant activities of lycopene in mice. Nutr Res 23(11):1591–1595

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank AnikĂł HirnĂ© Perkecz for the preparation of the histological slides and DĂĄniel TĂłth for technical assistance. Attila DĂ©vay, the Head of Institute of Pharmaceutical Technology and Biopharmacy, for technical support. Our work was supported by OTKA K60121, K76176 K73044, K78059, ETT 03-380/2009, ETT 04-364/2009 and the “Science, Please! Research Teams on Innovation” programme (SROP-4.2.2/08/1/2008-0011) and Developing Competitiveness of Universities in the South Transdanubian Region (SROP-4.2.1.B-10/2/KONV-2010-0002). Györgyi HorvĂĄth was supported by PTE ÁOK KA-34039-35/2009 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsuzsanna Helyes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

HorvĂĄth, G., SzƑke, É., KemĂ©ny, Á. et al. Lutein Inhibits the Function of the Transient Receptor Potential A1 Ion Channel in Different In Vitro and In Vivo Models. J Mol Neurosci 46, 1–9 (2012). https://doi.org/10.1007/s12031-011-9525-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-011-9525-3

Keywords

Navigation