Skip to main content

Advertisement

Log in

Mesenchymal Stem/Progenitor Cells Derived from Articular Cartilage, Synovial Membrane and Synovial Fluid for Cartilage Regeneration: Current Status and Future Perspectives

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Large articular cartilage defects remain an immense challenge in the field of regenerative medicine because of their poor intrinsic repair capacity. Currently, the available medical interventions can relieve clinical symptoms to some extent, but fail to repair the cartilaginous injuries with authentic hyaline cartilage. There has been a surge of interest in developing cell-based therapies, focused particularly on the use of mesenchymal stem/progenitor cells with or without scaffolds. Mesenchymal stem/progenitor cells are promising graft cells for tissue regeneration, but the most suitable source of cells for cartilage repair remains controversial. The tissue origin of mesenchymal stem/progenitor cells notably influences the biological properties and therapeutic potential. It is well known that mesenchymal stem/progenitor cells derived from synovial joint tissues exhibit superior chondrogenic ability compared with those derived from non-joint tissues; thus, these cell populations are considered ideal sources for cartilage regeneration. In addition to the progress in research and promising preclinical results, many important research questions must be answered before widespread success in cartilage regeneration is achieved. This review outlines the biology of stem/progenitor cells derived from the articular cartilage, the synovial membrane, and the synovial fluid, including their tissue distribution, function and biological characteristics. Furthermore, preclinical and clinical trials focusing on their applications for cartilage regeneration are summarized, and future research perspectives are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yamamoto, T., Wakitani, S., Imoto, K., et al. (2004). Fibroblast growth factor-2 promotes the repair of partial thickness defects of articular cartilage in immature rabbits but not in mature rabbits. Osteoarthritis and Cartilage, 12(8), 636–641.

    Article  PubMed  Google Scholar 

  2. Hembry, R. M., Dyce, J., Driesang, I., et al. (2001). Immunolocalization of matrix metalloproteinases in partial-thickness defects in pig articular cartilage. A preliminary report. Journal of Bone & Joint Surgery, American, 83-A(6), 826–838.

    Article  CAS  Google Scholar 

  3. Masahiko, T., Damle, S., Penmatsa, M., et al. (2012). Temporal changes in collagen cross-links in spontaneous articular cartilage repair. Cartilage, 3(3), 278–287.

    Article  PubMed  Google Scholar 

  4. Sellers, R. S., Zhang, R., Glasson, S. S., et al. (2000). Repair of articular cartilage defects one year after treatment with recombinant human bone morphogenetic protein-2 (rhBMP-2). Journal of Bone & Joint Surgery, American, 82(2), 151–160.

    Article  CAS  Google Scholar 

  5. Mithoefer, K., McAdams, T., Williams, R. J., Kreuz, P. C., & Mandelbaum, B. R. (2009). Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. The American Journal of Sports Medicine, 37(10), 2053–2063.

    Article  PubMed  Google Scholar 

  6. Case, J. M., & Scopp, J. M. (2016). Treatment of articular cartilage defects of the knee with microfracture and enhanced microfracture techniques. Sports Medicine & Arthroscopy Review, 24(2), 63–68.

    Article  Google Scholar 

  7. Richter, D. L., Schenck Jr., R. C., Wascher, D. C., & Treme, G. (2016). Knee Articular Cartilage Repair and Restoration Techniques: A Review of the Literature. Sports Health, 8(2), 153–160.

    Article  PubMed  Google Scholar 

  8. Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., & Peterson, L. (1994). Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. The New England Journal of Medicine, 331(14), 889–895.

    Article  CAS  PubMed  Google Scholar 

  9. Brittberg, M. (2008). Autologous chondrocyte implantation--technique and long-term follow-up. Injury, 39(Suppl 1), S40–S49.

    Article  PubMed  Google Scholar 

  10. Schnabel, M., Marlovits, S., Eckhoff, G., et al. (2002). Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthritis and Cartilage, 10(1), 62–70.

    Article  CAS  PubMed  Google Scholar 

  11. Darling, E. M., & Athanasiou, K. A. (2005). Rapid phenotypic changes in passaged articular chondrocyte subpopulations. Journal of Orthopaedic Research, 23(2), 425–432.

    Article  CAS  PubMed  Google Scholar 

  12. Dell'Accio, F., De Bari, C., & Luyten, F. P. (2001). Molecular markers predictive of the capacity of expanded human articular chondrocytes to form stable cartilage in vivo. Arthritis & Rheumatology, 44(7), 1608–1619.

    Article  Google Scholar 

  13. Dell'Accio, F., De Bari, C., & Luyten, F. P. (2003). Microenvironment and phenotypic stability specify tissue formation by human articular cartilage-derived cells in vivo. Experimental Cell Research, 287(1), 16–27.

    Article  PubMed  CAS  Google Scholar 

  14. Rackwitz, L., Djouad, F., Janjanin, S., Nöth, U., & Tuan, R. S. (2014). Functional cartilage repair capacity of de-differentiated, chondrocyte- and mesenchymal stem cell-laden hydrogels in vitro. Osteoarthritis and Cartilage, 22(8), 1148–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317.

    Article  CAS  PubMed  Google Scholar 

  16. Chen, J. Y., Mou, X. Z., Du, X. C., & Xiang, C. (2015). Comparative analysis of biological characteristics of adult mesenchymal stem cells with different tissue origins. Asian Pacific Journal of Tropical Medicine, 8(9), 739–746.

    Article  PubMed  CAS  Google Scholar 

  17. Somal, A., Bhat, I. A., B, I., et al. (2016). A comparative study of growth kinetics, in vitro differentiation potential and molecular characterization of fetal adnexa derived caprine mesenchymal stem cells. PloS One, 11(6), e0156821.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Liu, R., Chang, W., Wei, H., & Zhang, K. (2016). Comparison of the Biological Characteristics of Mesenchymal Stem Cells Derived from Bone Marrow and Skin. Stem Cells International, 2016, 3658798.

    PubMed  PubMed Central  Google Scholar 

  19. Li, C. Y., Wu, X. Y., Tong, J. B., et al. (2015). Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem Cell Research & Therapy, 6, 55.

    Article  CAS  Google Scholar 

  20. Islam, A., Hansen, A. K., Mennan, C., & Martinez-Zubiaurre, I. (2016). Mesenchymal stromal cells from human umbilical cords display poor chondrogenic potential in scaffold-free three dimensional cultures. European Cells & Materials Journal, 31, 407–424.

    Article  CAS  Google Scholar 

  21. Bernardo, M. E., Emons, J. A., Karperien, M., et al. (2007). Human mesenchymal stem cells derived from bone marrow display a better chondrogenic differentiation compared with other sources. Connective Tissue Research, 48(3), 132–140.

    Article  CAS  PubMed  Google Scholar 

  22. Huang, Y. C., Zhu, H. M., Cai, J. Q., et al. (2012). Hypoxia inhibited the spontaneous calcification of bone marrow derived mesenchymal stem cells. Journal of Cellular Biochemistry, 113(4), 1407–1415.

    Article  CAS  PubMed  Google Scholar 

  23. Farrell, E., Both, S. K., Odörfer, K. I., et al. (2011). In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells. BMC Musculoskeletal Disorders, 12, 31.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pelttari, K., Winter, A., Steck, E., et al. (2006). Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis & Rheumatology, 54(10), 3254–3266.

    Article  CAS  Google Scholar 

  25. Yang, W., Both, S. K., van Osch, G. J., Wang, Y., Jansen, J. A., & Yang, F. (2015). Effects of in vitro chondrogenic priming time of bone-marrow-derived mesenchymal stromal cells on in vivo endochondral bone formation. Acta Biomaterialia, 13, 254–265.

    Article  CAS  PubMed  Google Scholar 

  26. Serafini, M., Sacchetti, B., Pievani, A., et al. (2014). Establishment of bone marrow and hematopoietic niches in vivo by reversion of chondrocyte differentiation of human bone marrow stromal cells. Stem Cell Research, 12(3), 659–672.

    Article  PubMed  Google Scholar 

  27. Van der Stok, J., Koolen, M. K., Jahr, H., et al. (2014). Chondrogenically differentiated mesenchymal stromal cell pellets stimulate endochondral bone regeneration in critical-sized bone defects. European Cells & Materials Journal, 27, 137–148.

    Article  Google Scholar 

  28. Su, X., Zuo, W., Wu, Z., et al. (2015). CD146 as a new marker for an increased chondroprogenitor cell sub-population in the later stages of osteoarthritis. Journal of Orthopaedic Research, 33(1), 84–91.

    Article  CAS  PubMed  Google Scholar 

  29. Ando, W., Kutcher, J. J., Krawetz, R., et al. (2014). Clonal analysis of synovial fluid stem cells to characterize and identify stable mesenchymal stromal cell/mesenchymal progenitor cell phenotypes in a porcine model: a cell source with enhanced commitment to the chondrogenic lineage. Cytotherapy, 16(6), 776–788.

    Article  CAS  PubMed  Google Scholar 

  30. Ohlsson, C., Nilsson, A., Isaksson, O., & Lindahl, A. (1992). Growth hormone induces multiplication of the slowly cycling germinal cells of the rat tibial growth plate. Proceedings of the National Academy of Sciences of the United States of America, 89(20), 9826–9830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Karlsson, C., Thornemo, M., Henriksson, H. B., & Lindahl, A. (2009). Identification of a stem cell niche in the zone of Ranvier within the knee joint. Journal of Anatomy, 215(3), 355–363.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Candela, M. E., Cantley, L., Yasuaha, R., Iwamoto, M., Pacifici, M., & Enomoto-Iwamoto, M. (2014). Distribution of slow-cycling cells in epiphyseal cartilage and requirement of β-catenin signaling for their maintenance in growth plate. Journal of Orthopaedic Research, 32(5), 661–668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kozhemyakina, E., Zhang, M., Ionescu, A., et al. (2015). Identification of a Prg4-expressing articular cartilage progenitor cell population in mice. Arthritis & Rheumatology, 67(5), 1261–1273.

    Article  CAS  Google Scholar 

  34. Pretzel, D., Linss, S., Rochler, S., et al. (2011). Relative percentage and zonal distribution of mesenchymal progenitor cells in human osteoarthritic and normal cartilage. Arthritis Research & Therapy, 13(2), R64.

    Article  CAS  Google Scholar 

  35. Ustunel, I., Ozenci, A. M., Sahin, Z., et al. (2008). The immunohistochemical localization of notch receptors and ligands in human articular cartilage, chondroprogenitor culture and ultrastructural characteristics of these progenitor cells. Acta Histochemica, 110(5), 397–407.

    Article  PubMed  Google Scholar 

  36. Ozbey, O., Sahin, Z., Acar, N., et al. (2014). Characterization of colony-forming cells in adult human articular cartilage. Acta Histochemica, 116(5), 763–770.

    Article  CAS  PubMed  Google Scholar 

  37. Grogan, S. P., Miyaki, S., Asahara, H., D'Lima, D. D., & Lotz, M. K. (2009). Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis. Arthritis Research & Therapy, 11(3), R85.

    Article  CAS  Google Scholar 

  38. Giurea, A., Rüger, B. M., Hollemann, D., Yanagida, G., Kotz, R., & Fischer, M. B. (2006). STRO-1+ mesenchymal precursor cells located in synovial surface projections of patients with osteoarthritis. Osteoarthritis and Cartilage, 14(9), 938–943.

    Article  CAS  PubMed  Google Scholar 

  39. Klein, T. J., Malda, J., Sah, R. L., & Hutmacher, D. W. (2009). Tissue engineering of articular cartilage with biomimetic zones. Tissue Engineering Part B Reviews, 15(2), 143–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hayes, A. J., MacPherson, S., Morrison, H., Dowthwaite, G., & Archer, C. W. (2001). The development of articular cartilage: evidence for an appositional growth mechanism. Anatomy and Embryology (Berlin), 203(6), 469–479.

    Article  CAS  Google Scholar 

  41. Bartok, B., & Firestein, G. S. (2010). Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunological Reviews, 233(1), 233–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vandenabeele, F., De Bari, C., Moreels, M., et al. (2003). Morphological and immunocytochemical characterization of cultured fibroblast-like cells derived from adult human synovial membrane. Archives of Histology and Cytology, 66(2), 145–153.

    Article  CAS  PubMed  Google Scholar 

  43. Kurth, T. B., Dell'accio, F., Crouch, V., Augello, A., Sharpe, P. T., & De Bari, C. (2011). Functional mesenchymal stem cell niches in adult mouse knee joint synovium in vivo. Arthritis & Rheumatology, 63(5), 1289–1300.

    Article  Google Scholar 

  44. Hermida-Gómez, T., Fuentes-Boquete, I., Gimeno-Longas, M. J., et al. (2011). Quantification of cells expressing mesenchymal stem cell markers in healthy and osteoarthritic synovial membranes. The Journal of Rheumatology, 38(2), 339–349.

    Article  PubMed  Google Scholar 

  45. Chen, C., Fingerhut, J. M., & Yamashita, Y. M. (2016). The ins(ide) and outs(ide) of asymmetric stem cell division. Current Opinion in Cell Biology, 43, 1–6.

    Article  CAS  PubMed  Google Scholar 

  46. Mukoyama, S., Sasho, T., Akatsu, Y., et al. (2015). Spontaneous repair of partial thickness linear cartilage injuries in immature rats. Cell and Tissue Research, 359(2), 513–520.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, K., Shi, J., Li, Y., et al. (2016). Chondrogenic cells respond to partial-thickness defects of articular cartilage in adult rats: an in vivo study. Journal of Molecular Histology, 47(3), 249–258.

    Article  CAS  PubMed  Google Scholar 

  48. Hunziker, E. B., & Rosenberg, L. C. (1996). Repair of partial-thickness defects in articular cartilage: cell recruitment from the synovial membrane. Journal of Bone & Joint Surgery, American, 78(5), 721–733.

    Article  CAS  Google Scholar 

  49. Hunziker, E. B. (2001). Growth-factor-induced healing of partial-thickness defects in adult articular cartilage. Osteoarthritis and Cartilage, 9(1), 22–32.

    Article  CAS  PubMed  Google Scholar 

  50. Morito, T., Muneta, T., Hara, K., et al. (2008). Synovial fluid-derived mesenchymal stem cells increase after intra-articular ligament injury in humans. Rheumatology (Oxford, England), 47(8), 1137–1143.

    Article  CAS  Google Scholar 

  51. Matsukura, Y., Muneta, T., Tsuji, K., Koga, H., & Sekiya, I. (2014). Mesenchymal stem cells in synovial fluid increase after meniscus injury. Clinical Orthopaedics and Related Research, 472(5), 1357–1364.

    Article  PubMed  Google Scholar 

  52. Anraku, Y., Mizuta, H., Sei, A., et al. (2009). Analyses of early events during chondrogenic repair in rat full-thickness articular cartilage defects. Journal of Bone and Mineral Metabolism, 27(3), 272–286.

    Article  CAS  PubMed  Google Scholar 

  53. Chuma, H., Mizuta, H., Kudo, S., Takagi, K., & Hiraki, Y. (2004). One day exposure to FGF-2 was sufficient for the regenerative repair of full-thickness defects of articular cartilage in rabbits. Osteoarthritis and Cartilage, 12(10), 834–842.

    Article  CAS  PubMed  Google Scholar 

  54. Swan, A., Amer, H., & Dieppe, P. (2002). The value of synovial fluid assays in the diagnosis of joint disease: a literature survey. Annals of the Rheumatic Diseases, 61(6), 493–498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Delling, U., Brehm, W., Metzger, M., Ludewig, E., Winter, K., & Jülke, H. (2015). In vivo tracking and fate of intra-articularly injected superparamagnetic iron oxide particle-labeled multipotent stromal cells in an ovine model of osteoarthritis. Cell Transplantation, 24(11), 2379–2390.

    Article  PubMed  Google Scholar 

  56. Skagen, P. S., Kruse, H. A., & Horn, T. (2014). Repair Mechanisms in Articular Cartilage—A Porcine in Vitro Study. Microscopy Research, 2(2), 67–80.

    Article  Google Scholar 

  57. Seol, D., McCabe, D. J., Choe, H., et al. (2012). Chondrogenic progenitor cells respond to cartilage injury. Arthritis & Rheumatology, 64(11), 3626–3637.

    Article  CAS  Google Scholar 

  58. Yu, Y., Brouillette, M. J., Seol, D., Zheng, H., Buckwalter, J. A., & Martin, J. A. (2015). Use of recombinant human stromal cell-derived factor 1α-loaded fibrin/hyaluronic acid hydrogel networks to achieve functional repair of full-thickness bovine articular cartilage via homing of chondrogenic progenitor cells. Arthritis & Rheumatology, 67(5), 1274–1285.

    Article  CAS  Google Scholar 

  59. Bos, P. K., Kops, N., Verhaar, J. A., & van Osch, G. J. (2008). Cellular origin of neocartilage formed at wound edges of articular cartilage in a tissue culture experiment. Osteoarthritis and Cartilage, 16(2), 204–211.

    Article  CAS  PubMed  Google Scholar 

  60. Dowthwaite, G. P., Bishop, J. C., Redman, S. N., Thomson, B., & Archer, C. W. (2002). Characterisation of articular cartilage progenitor cells. European Cells & Materials Journal, 4, 35–36.

    Google Scholar 

  61. Dowthwaite, G. P., Bishop, J. C., Redman, S. N., et al. (2004). The surface of articular cartilage contains a progenitor cell population. Journal of Cell Science, 117(Pt 6), 889–897.

    Article  CAS  PubMed  Google Scholar 

  62. Nelson, L., McCarthy, H. E., Fairclough, J., Williams, R., & Archer, C. W. (2014). Evidence of a Viable Pool of Stem Cells within Human Osteoarthritic Cartilage. Cartilage, 5(4), 203–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Choi, W. H., Kim, H. R., Lee, S. J., et al. (2016). Fetal cartilage-derived cells have stem cell properties and are a highly potent cell source for cartilage regeneration. Cell Transplantation, 25(3), 449–461.

    Article  PubMed  Google Scholar 

  64. Salamon, A., Jonitz-Heincke, A., Adam, S., et al. (2013). Articular cartilage-derived cells hold a strong osteogenic differentiation potential in comparison to mesenchymal stem cells in vitro. Experimental Cell Research, 319(18), 2856–2865.

    Article  CAS  PubMed  Google Scholar 

  65. Li, Y., Zhou, J., Yang, X., Jiang, Y., & Gui, J. (2016). Intermittent hydrostatic pressure maintains and enhances the chondrogenic differentiation of cartilage progenitor cells cultivated in alginate beads. Development Growth & Differentiation, 58(2), 180–193.

    Article  CAS  Google Scholar 

  66. Williams, R., Khan, I. M., Richardson, K., et al. (2010). Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PloS One, 5(10), e13246.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. McCarthy, H. E., Bara, J. J., Brakspear, K., Singhrao, S. K., & Archer, C. W. (2012). The comparison of equine articular cartilage progenitor cells and bone marrow-derived stromal cells as potential cell sources for cartilage repair in the horse. The Veterinary Journal, 192(3), 345–351.

    Article  CAS  PubMed  Google Scholar 

  68. Fickert, S., Fiedler, J., & Brenner, R. E. (2003). Identification, quantification and isolation of mesenchymal progenitor cells from osteoarthritic synovium by fluorescence automated cell sorting. Osteoarthritis and Cartilage, 11(11), 790–800.

    Article  CAS  PubMed  Google Scholar 

  69. Li, J., Campbell, D. D., Bal, G. K., & Pei, M. (2014). Can arthroscopically harvested synovial stem cells be preferentially sorted using stage-specific embryonic antigen 4 antibody for cartilage, bone, and adipose regeneration? Arthroscopy: The Journal of Arthroscopic & Related Surgery, 30(3), 352–361.

    Article  Google Scholar 

  70. De Bari, C., Dell'Accio, F., Tylzanowski, P., & Luyten, F. P. (2001). Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis & Rheumatology, 44(8), 1928–1942.

    Article  Google Scholar 

  71. Sakaguchi, Y., Sekiya, I., Yagishita, K., & Muneta, T. (2005). Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis & Rheumatology, 52(8), 2521–2529.

    Article  Google Scholar 

  72. Yoshimura, H., Muneta, T., Nimura, A., Yokoyama, A., Koga, H., & Sekiya, I. (2007). Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell and Tissue Research, 327(3), 449–462.

    Article  CAS  PubMed  Google Scholar 

  73. Mochizuki, T., Muneta, T., Sakaguchi, Y., et al. (2006). Higher chondrogenic potential of fibrous synovium- and adipose synovium-derived cells compared with subcutaneous fat-derived cells: distinguishing properties of mesenchymal stem cells in humans. Arthritis & Rheumatology, 54(3), 843–853.

    Article  CAS  Google Scholar 

  74. Segawa, Y., Muneta, T., Makino, H., et al. (2009). Mesenchymal stem cells derived from synovium, meniscus, anterior cruciate ligament, and articular chondrocytes share similar gene expression profiles. Journal of Orthopaedic Research, 27(4), 435–441.

    Article  CAS  PubMed  Google Scholar 

  75. Karystinou, A., Dell'Accio, F., Kurth, T. B., et al. (2009). Distinct mesenchymal progenitor cell subsets in the adult human synovium. Rheumatology (Oxford, England), 48(9), 1057–1064.

    Article  CAS  Google Scholar 

  76. Bilgen, B., Ren, Y., Pei, M., Aaron, R. K., & Ciombor, D. M. (2009). CD14-negative isolation enhances chondrogenesis in synovial fibroblasts. Tissue Engineering Part A, 15(11), 3261–3270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gullo, F., & De Bari, C. (2013). Prospective purification of a subpopulation of human synovial mesenchymal stem cells with enhanced chondro-osteogenic potency. Rheumatology (Oxford, England), 52(10), 1758–1768.

    Article  CAS  Google Scholar 

  78. Jones, E. A., Crawford, A., English, A., et al. (2008). Synovial fluid mesenchymal stem cells in health and early osteoarthritis: detection and functional evaluation at the single-cell level. Arthritis & Rheumatology, 58(6), 1731–1740.

    Article  CAS  Google Scholar 

  79. Lee, W. J., Hah, Y. S., Ock, S. A., et al. (2015). Cell source-dependent in vivo immunosuppressive properties of mesenchymal stem cells derived from the bone marrow and synovial fluid of minipigs. Experimental Cell Research, 333(2), 273–288.

    Article  CAS  PubMed  Google Scholar 

  80. Kim, Y. S., Lee, H. J., Yeo, J. E., Kim, Y. I., Choi, Y. J., & Koh, Y. G. (2015). Isolation and characterization of human mesenchymal stem cells derived from synovial fluid in patients with osteochondral lesion of the talus. The American Journal of Sports Medicine, 43(2), 399–406.

    Article  PubMed  Google Scholar 

  81. Krawetz, R. J., Wu, Y. E., Martin, L., Rattner, J. B., Matyas, J. R., & Hart, D. A. (2012). Synovial fluid progenitors expressing CD90+ from normal but not osteoarthritic joints undergo chondrogenic differentiation without micro-mass culture. PloS One, 7(8), e43616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Marcus, P., De Bari, C., Dell'Accio, F., & Archer, C. W. (2014). Articular chondroprogenitor cells maintain chondrogenic potential but fail to form a functional matrix when implanted into muscles of SCID mice. Cartilage, 5(4), 231–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Frisbie, D. D., McCarthy, H. E., Archer, C. W., Barrett, M. F., & McIlwraith, C. W. (2015). Evaluation of articular cartilage progenitor cells for the repair of articular defects in an equine model. Journal of Bone & Joint Surgery, American, 97(6), 484–493.

    Article  Google Scholar 

  84. De Bari, C., Dell'Accio, F., & Luyten, F. P. (2004). Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo. Arthritis & Rheumatology, 50(1), 142–150.

    Article  CAS  Google Scholar 

  85. Vinardell, T., Sheehy, E. J., Buckley, C. T., & Kelly, D. J. (2012). A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources. Tissue Engineering Part A, 18(11–12), 1161–1170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hori, J., Deie, M., Kobayashi, T., Yasunaga, Y., Kawamata, S., & Ochi, M. (2011). Articular cartilage repair using an intra-articular magnet and synovium-derived cells. Journal of Orthopaedic Research, 29(4), 531–538.

    Article  PubMed  Google Scholar 

  87. Koga, H., Muneta, T., Ju, Y. J., et al. (2007). Synovial stem cells are regionally specified according to local microenvironments after implantation for cartilage regeneration. Stem Cells, 25(3), 689–696.

    Article  CAS  PubMed  Google Scholar 

  88. Pei, M., He, F., Boyce, B. M., & Kish, V. L. (2009). Repair of full-thickness femoral condyle cartilage defects using allogeneic synovial cell-engineered tissue constructs. Osteoarthritis and Cartilage, 17(6), 714–722.

    Article  CAS  PubMed  Google Scholar 

  89. Suzuki, S., Muneta, T., Tsuji, K., et al. (2012). Properties and usefulness of aggregates of synovial mesenchymal stem cells as a source for cartilage regeneration. Arthritis Research & Therapy, 14(3), R136.

    Article  CAS  Google Scholar 

  90. Lee, J. C., Min, H. J., Park, H. J., Lee, S., Seong, S. C., & Lee, M. C. (2013). Synovial membrane-derived mesenchymal stem cells supported by platelet-rich plasma can repair osteochondral defects in a rabbit model. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 29(6), 1034–1046.

    Article  Google Scholar 

  91. Koga, H., Shimaya, M., Muneta, T., et al. (2008). Local adherent technique for transplanting mesenchymal stem cells as a potential treatment of cartilage defect. Arthritis Research & Therapy, 10(4), R84.

    Article  CAS  Google Scholar 

  92. Nakamura, T., Sekiya, I., Muneta, T., et al. (2012). Arthroscopic, histological and MRI analyses of cartilage repair after a minimally invasive method of transplantation of allogeneic synovial mesenchymal stromal cells into cartilage defects in pigs. Cytotherapy, 14(3), 327–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lee, J. C., Min, H. J., Lee, S., Seong, S. C., & Lee, M. C. (2013). Effect of chondroitinase ABC on adhesion and behavior of synovial membrane-derived mesenchymal stem cells in rabbit partial-thickness chondral defects. Journal of Orthopaedic Research, 31(8), 1293–1301.

    Article  CAS  PubMed  Google Scholar 

  94. Ando, W., Tateishi, K., Hart, D. A., et al. (2007). Cartilage repair using an in vitro generated scaffold-free tissue-engineered construct derived from porcine synovial mesenchymal stem cells. Biomaterials, 28(36), 5462–5470.

    Article  CAS  PubMed  Google Scholar 

  95. Shimomura, K., Ando, W., Tateishi, K., et al. (2010). The influence of skeletal maturity on allogenic synovial mesenchymal stem cell-based repair of cartilage in a large animal model. Biomaterials, 31(31), 8004–8011.

    Article  CAS  PubMed  Google Scholar 

  96. Fujie, H., Nansai, R., Ando, W., et al. (2015). Zone-specific integrated cartilage repair using a scaffold-free tissue engineered construct derived from allogenic synovial mesenchymal stem cells: Biomechanical and histological assessments. Journal of Biomechanics, 48(15), 4101–4108.

    Article  PubMed  Google Scholar 

  97. Ando, W., Fujie, H., Moriguchi, Y., et al. (2012). Detection of abnormalities in the superficial zone of cartilage repaired using a tissue engineered construct derived from synovial stem cells. European Cells & Materials Journal, 24, 292–307.

    Article  CAS  Google Scholar 

  98. Chiang, C. W., Chen, W. C., Liu, H. W., & Chen, C. H. (2014). Application of synovial fluid mesenchymal stem cells: platelet-rich plasma hydrogel for focal cartilage defect. Journal of Experimental & Clinical Medicine, 6(4), 118–124.

    Article  CAS  Google Scholar 

  99. Jiang, Y., Cai, Y., Zhang, W., et al. (2016). Human cartilage-derived progenitor cells from committed chondrocytes for efficient cartilage repair and regeneration. Stem Cells Translational Medicine, 5(6), 733–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sekiya, I., Muneta, T., Horie, M., & Koga, H. (2015). Arthroscopic transplantation of synovial stem cells improves clinical outcomes in knees with cartilage defects. Clinical Orthopaedics and Related Research, 473(7), 2316–2326.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Alsalameh, S., Amin, R., Gemba, T., & Lotz, M. (2004). Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis & Rheumatology, 50(5), 1522–1532.

    Article  Google Scholar 

  102. Fickert, S., Fiedler, J., & Brenner, R. E. (2004). Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers. Arthritis Research & Therapy, 6(5), R422–R432.

    Article  CAS  Google Scholar 

  103. Hattori, S., Oxford, C., & Reddi, A. H. (2007). Identification of superficial zone articular chondrocyte stem/progenitor cells. Biochemical and Biophysical Research Communications, 358(1), 99–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yu, Y., Zheng, H., Buckwalter, J. A., & Martin, J. A. (2014). Single cell sorting identifies progenitor cell population from full thickness bovine articular cartilage. Osteoarthritis and Cartilage, 22(9), 1318–1326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fu, C., Yan, Z., Xu, H., et al. (2015). Isolation, identification and differentiation of human embryonic cartilage stem cells. Cell Biology International, 39(7), 777–787.

    Article  CAS  PubMed  Google Scholar 

  106. Djouad, F., Bony, C., Häupl, T., et al. (2005). Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Arthritis Research & Therapy, 7(6), R1304–R1315.

    Article  CAS  Google Scholar 

  107. Prado, A. A., Favaron, P. O., da Silva, L. C., Baccarin, R. Y., Miglino, M. A., & Maria, D. A. (2015). Characterization of mesenchymal stem cells derived from the equine synovial fluid and membrane. BMC Veterinary Research, 11, 281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Godoy, R. F., Alves, A. L., Gibson, A. J., Lima, E. M., & Goodship, A. E. (2014). Do progenitor cells from different tissue have the same phenotype? Research in Veterinary Science, 96(3), 454–459.

    Article  CAS  PubMed  Google Scholar 

  109. Teramura, T., Fukuda, K., Kurashimo, S., et al. (2008). Isolation and characterization of side population stem cells in articular synovial tissue. BMC Musculoskeletal Disorders, 9, 86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Jones, E. A., English, A., Henshaw, K., et al. (2004). Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis & Rheumatology, 50(3), 817–827.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 31600792, U1613224 and 31570970).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Deng or Yong-Can Huang.

Ethics declarations

Disclosures

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, YZ., Xie, HQ., Silini, A. et al. Mesenchymal Stem/Progenitor Cells Derived from Articular Cartilage, Synovial Membrane and Synovial Fluid for Cartilage Regeneration: Current Status and Future Perspectives. Stem Cell Rev and Rep 13, 575–586 (2017). https://doi.org/10.1007/s12015-017-9753-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-017-9753-1

Keywords

Navigation