Skip to main content

Advertisement

Log in

Risks and Mechanisms of Oncological Disease Following Stem Cell Transplantation

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Unique biological properties of stem cells make them a precious source of cell material for treatment of a number of pathological conditions. Among issues inhibiting transition of stem cell technologies to the clinics, the risk of oncological complications of stem cell-based therapies is the most critical. A massive amount of clinical and experimental data demonstrates that both hematological (including acute and chronic myeloid leukemia) and non-hematological (including teratoma and non-teratoma tumors) malignancies could arise from donor stem cells of different types. A wide spectrum of mechanisms could underlie the development of oncological disease in recipients, including: i) blast transformation of proliferating donor stem cells under persistent action of certain factors in the recipient, thus causing de novo malignancies; ii) contamination of donor cell material with malignant cells; iii) transmission of particular viral subtypes with donor stem cells, combined with immunosuppression therapy effects; iv) uncontrollable proliferation of residual undifferentiated stem cells of various plasticity; and v) karyotypic instability in stem cells following prolonged culturing/expansion in vitro. Potential preventive strategies are diverse and include i) high-throughput cell sorting-based strategies; ii) introduction of suicide genes into the donor stem cell genome; iii) application of apoptosis-inducing epigenetic factors; and some other options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tyndall, A., & Gratwohl, A. (1997). Blood and marrow stem cell transplants in autoimmune disease. A consensus report written on behalf of the European League Against Rheumatism (EULAR) and the European Group for Blood and Marrow Transplantation (EBMT). British Journal of Rheumatology, 36(3), 390–392.

    PubMed  CAS  Google Scholar 

  2. Anisimov, S. V. (2009). Cell therapy for Parkinson’s disease: II. Somatic stem cell-based applications. Advances in Gerontology, 22(1), 150–166.

    PubMed  CAS  Google Scholar 

  3. Li, Y., & Chopp, M. (2009). Marrow stromal cell transplantation in stroke and traumatic brain injury. Neuroscience Letters, 456(3), 120–123.

    PubMed  CAS  Google Scholar 

  4. Elfenbein, G. J., Brogaonkar, D. S., Bias, W. B., et al. (1978). Cytogenetic evidence for recurrence of acute myelogenous leukemia after allogeneic bone marrow transplantation in donor hematopoietic cells. Blood, 52(3), 627–636.

    PubMed  CAS  Google Scholar 

  5. Sala-Torra, O., Hanna, C., Loken, M. R., et al. (2006). Evidence of donor-derived hematologic malignancies after hematopoietic stem cell transplantation. Biology of Blood and Marrow Transplantation, 12(5), 511–517.

    PubMed  Google Scholar 

  6. Thomas, E. D., Bryant, I. I., Buckner, C. D., et al. (1972). Leukaemic transformation of engrafted human cells in vivo. Lancet, 1(7764), 1310–1313.

    PubMed  CAS  Google Scholar 

  7. Glasser, L., Meloni-Ehrig, A., Greaves, W., Demel, K. C., & Butera, J. (2009). Synchronous development of acute myeloid leukemia in recipient and donor after allogeneic bone marrow transplantation: report of a case with comments on donor evaluation. Transfusion, 49(3), 555–562.

    PubMed  Google Scholar 

  8. Bielorai, B., Deeg, H. J., Weintraub, M., et al. (2003). B-cell lymphoma developing in the donor 9 years after donor-origin acute myeloid leukemia post bone marrow transplantation. Bone Marrow Transplantation, 31(10), 931–934.

    PubMed  CAS  Google Scholar 

  9. Flynn, C. M., & Kaufman, D. S. (2007). Donor cell leukemia: insight into cancer stem cells and the stem cell niche. Blood, 109(7), 2688–2692.

    PubMed  CAS  Google Scholar 

  10. Fialkow, P. J., Thomas, E. D., Bryant, J. I., & Neiman, P. E. (1971). Leukaemic transformation of engrafted human marrow cells in vivo. Lancet, 1(7693), 251–255.

    PubMed  CAS  Google Scholar 

  11. Goh, K., & Klemperer, M. R. (1977). In vivo leukemic transformation: cytogenetic evidence of in vivo leukemic transformation of engrafted marrow cells. American Journal of Hematology, 2(3), 283–290.

    PubMed  CAS  Google Scholar 

  12. Gossett, T. C., Gale, R. P., Fleischman, H., Austin, G. E., Sparkes, R. S., & Taylor, C. R. (1979). Immunoblastic sarcoma in donor cells after bone-marrow transplantation. The New England Journal of Medicine, 300(16), 904–907.

    Article  PubMed  CAS  Google Scholar 

  13. Newburger, P. E., Latt, S. A., Pesando, J. M., et al. (1981). Leukemia relapse in donor cells after allogeneic bone-marrow transplantation. The New England Journal of Medicine, 304(12), 712–714.

    PubMed  CAS  Google Scholar 

  14. Marmont, A., Frassoni, F., Bacigalupo, A., et al. (1984). Recurrence of Ph-positive leukemia in donor cells after marrow transplantation for chronic granulocytic leukemia. The New England Journal of Medicine, 310(14), 903–906.

    Article  PubMed  CAS  Google Scholar 

  15. Smith, J. L., Heerema, N. A., & Provisor, A. J. (1985). Leukaemic transformation of engrafted bone marrow cells. British Journal of Haematology, 60(3), 415–422.

    PubMed  CAS  Google Scholar 

  16. Zaccaria, A., Rosti, G., Testoni, N., et al. (1987). Chromosome studies in patients with acute nonlymphocytic or acute lymphocytic leukemia submitted to bone marrow transplantation—results of a European cooperative study. Cancer Genetics and Cytogenetics, 26(1), 51–58.

    PubMed  CAS  Google Scholar 

  17. Witherspoon, R. P., Fisher, L. D., Schoch, G., et al. (1989). Secondary cancers after bone marrow transplantation for leukemia or aplastic anemia. The New England Journal of Medicine, 321(12), 784–789.

    Article  PubMed  CAS  Google Scholar 

  18. Niederwieser, D. W., Appelbaum, F. R., Gastl, G., et al. (1990). Inadvertent transmission of a donor’s acute myeloid leukemia in bone marrow transplantation for chronic myelocytic leukemia. The New England Journal of Medicine, 322(25), 1794–1796.

    Article  PubMed  CAS  Google Scholar 

  19. McCann, S. R., Lawler, M., Humphries, P., et al. (1992). Recurrence of Philadelphia chromosome positive leukemia in donor cells after marrow transplantation for chronic granulocytic leukemia: confirmation by microsatellite studies. Blood, 79(10), 2803–2805.

    PubMed  CAS  Google Scholar 

  20. Berg, K. D., Brinster, N. K., Huhn, K. M., et al. (2001). Transmission of a T-cell lymphoma by allogeneic bone marrow transplantation. The New England Journal of Medicine, 345(20), 1458–1463.

    PubMed  CAS  Google Scholar 

  21. Hambach, L., Eder, M., Dammann, E., et al. (2001). Donor cell-derived acute myeloid leukemia developing 14 months after matched unrelated bone marrow transplantation for chronic myeloid leukemia. Bone Marrow Transplantation, 28(7), 705–707.

    PubMed  CAS  Google Scholar 

  22. Brunstein, C. G., Hirsch, B. A., Hammerschmidt, D., et al. (2002). Leukemia in donor cells after allogeneic hematopoietic stem cell transplant. Bone Marrow Transplantation, 29(12), 999–1003.

    PubMed  CAS  Google Scholar 

  23. Gopcsa, L., Barta, A., Banyai, A., et al. (2002). Acute myeloid leukaemia of donor cell origin developing 5 years after allogeneic bone marrow transplantation for chronic myeloid leukaemia. Bone Marrow Transplantation, 29(5), 449–452.

    PubMed  CAS  Google Scholar 

  24. Lawler, M., Locasciulli, A., Longoni, D., Schiro, R., & McCann, S. R. (2002). Leukaemic transformation of donor cells in a patient receiving a second allogeneic bone marrow transplant for severe aplastic anaemia. Bone Marrow Transplantation, 29(5), 453–456.

    PubMed  CAS  Google Scholar 

  25. Daly, A. S., Kamel-Reid, S., Lipton, J. H., et al. (2004). Acute leukemia of donor origin arising after stem cell transplantation for acute promyelocytic leukemia. Leukemia Research, 28(10), 1107–1111.

    PubMed  Google Scholar 

  26. Reichard, K. K., Zhang, Q. Y., Sanchez, L., et al. (2006). Acute myeloid leukemia of donor origin after allogeneic bone marrow transplantation for precursor T-cell acute lymphoblastic leukemia: case report and review of the literature. American Journal of Hematology, 81(3), 178–185.

    PubMed  Google Scholar 

  27. Fraser, C. J., Hirsch, B. A., Dayton, V., et al. (2005). First report of donor cell derived acute leukemia as a complication of umbilical cord blood transplantation. Blood, 106(13), 4377–4380.

    PubMed  CAS  Google Scholar 

  28. Matsunaga, T., Murase, K., Yoshida, M., et al. (2005). Donor cell derived acute myeloid leukemia after allogeneic cord blood transplantation in a patient with adult T-cell lymphoma. American Journal of Hematology, 79(4), 294–298.

    PubMed  Google Scholar 

  29. Ando, T., Yujiri, T., Mitani, N., et al. (2006). Donor cell-derived acute myeloid leukemia after unrelated umbilical cord blood transplantation. Leukemia, 20(4), 744–745.

    PubMed  CAS  Google Scholar 

  30. Mitsui, H., Nakazawa, T., Tanimura, A., Karasuno, T., & Hiraoka, A. (2007). Donor cell-derived chronic myeloproliferative disease with t(7;11)(p15;p15) after cord blood transplantation in a patient with Philadelphia chromosome-positive acute lymphoblastic leukemia. International Journal of Hematology, 86(2), 192–195.

    PubMed  Google Scholar 

  31. Nagamura-Inoue, T., Kodo, H., Takahashi, T. A., et al. (2007). Four cases of donor cell-derived AML following unrelated cord blood transplantation for adult patients: experiences of the Tokyo Cord Blood Bank. Cytotherapy, 9(8), 727–728.

    PubMed  CAS  Google Scholar 

  32. Hamaki, T., Kajiwara, K., Kami, M., et al. (2008). Donor cell-derived acute monoblastic leukemia involving MLL gene translocation in an adult patient who received umbilical cord blood transplantation. Bone Marrow Transplantation, 41(1), 91–92.

    PubMed  CAS  Google Scholar 

  33. Baron, F., Dresse, M. F., & Beguin, Y. (2003). Transmission of chronic myeloid leukemia through peripheral-blood stem-cell transplantation. The New England Journal of Medicine, 349(9), 913–914.

    PubMed  Google Scholar 

  34. Hertenstein, B., Hambach, L., Bacigalupo, A., et al. (2005). Development of leukemia in donor cells after allogeneic stem cell transplantation—a survey of the European Group for Blood and Marrow Transplantation (EBMT). Haematologica, 90(7), 969–975.

    PubMed  Google Scholar 

  35. Cetin, Z., Tezcan, G., Karauzum, S. B., et al. (2006). Donor cell-derived acute myeloblastic leukemia after allogeneic peripheral blood hematopoietic stem cell transplantation for juvenile myelomonocytic leukemia. Journal of Pediatric Hematology/Oncology, 28(11), 763–767.

    PubMed  CAS  Google Scholar 

  36. Murata, M., Ishikawa, Y., Ohashi, H., et al. (2008). Donor cell leukemia after allogeneic peripheral blood stem cell transplantation: a case report and literature review. International Journal of Hematology, 88(1), 111–115.

    PubMed  Google Scholar 

  37. Niederwieser, D., Gentilini, C., Hegenbart, U., et al. (2004). Transmission of donor illness by stem cell transplantation: should screening be different in older donors? Bone Marrow Transplantation, 34(8), 657–665.

    PubMed  CAS  Google Scholar 

  38. Gale, R. P., & for the UCLA Bone Marrow Transplant Team. (1978). Approaches to leukemic relapse following bone marrow transplantation. Transplantation Proceedings, 10(1), 167–172.

    PubMed  CAS  Google Scholar 

  39. Boyd, C. N., Ramberg, R. C., & Thomas, E. D. (1982). The incidence of recurrence of leukemia in donor cells after allogeneic bone marrow transplantation. Leukemia Research, 6(6), 833–837.

    PubMed  CAS  Google Scholar 

  40. Kiss, T. L., Chang, H., Daly, A., et al. (2004). Bone marrow aspirates as part of routine donor assessment for allogeneic blood and marrow transplantation can reveal presence of occult hematological malignancies in otherwise asymptomatic individuals. Bone Marrow Transplantation, 33(8), 855–858.

    PubMed  CAS  Google Scholar 

  41. Fyles, G. M., Messner, H. A., Lockwood, G., et al. (1991). Long-term results of bone marrow transplantation for patients with AML, ALL and CML prepared with single dose total body irradiation of 500 cGy delivered with a high dose rate. Bone Marrow Transplantation, 8(6), 453–463.

    PubMed  CAS  Google Scholar 

  42. Cooley, L. D., Sears, D. A., Udden, M. M., Harrison, W. R., & Baker, K. R. (2000). Donor cell leukemia: report of a case occurring 11 years after allogeneic bone marrow transplantation and review of the literature. American Journal of Hematology, 63(1), 46–53.

    PubMed  CAS  Google Scholar 

  43. Milpied, N., Coste-Burel, M., Accard, F., et al. (1999). Epstein–Barr virus associated B cell lymphoproliferative disease after non-myeloablative allogeneic stem cell transplantation. Bone Marrow Transplantation, 23(6), 629–630.

    PubMed  CAS  Google Scholar 

  44. Schubach, W. H., Hackman, R., Neiman, P. E., Miller, G., & Thomas, E. D. (1982). A monoclonal immunoblastic sarcoma in donor cells bearing Epstein–Barr virus genomes following allogeneic marrow grafting for acute lymphoblastic leukemia. Blood, 60(1), 180–187.

    PubMed  CAS  Google Scholar 

  45. Zamkoff, K. W., Bergman, S., Beaty, M. W., Buss, D. H., Pettenati, M. J., & Hurd, D. D. (2003). Fatal EBV-related post-transplant lymphoproliferative disorder (LPD) after matched related donor nonmyeloablative peripheral blood progenitor cell transplant. Bone Marrow Transplantation, 31(3), 219–222.

    PubMed  CAS  Google Scholar 

  46. Shapiro, R. S., McClain, K., Frizzera, G., et al. (1988). Epstein–Barr virus associated B cell lymphoproliferative disorders following bone marrow transplantation. Blood, 71(5), 1234–1243.

    PubMed  CAS  Google Scholar 

  47. Ho, A. Y., Adams, S., Shaikh, H., Pagliuca, A., Devereux, S., & Mufti, G. J. (2002). Fatal donor derived Epstein–Barr virus-associated post-transplant lymphoproliferative disorder following reduced intensity volunteer related bone marrow transplant for myelodysplastic syndrome. Bone Marrow Transplantation, 29(10), 867–869.

    PubMed  CAS  Google Scholar 

  48. Spiro, I. J., Yandell, D. W., Li, C., et al. (1993). Brief report: lymphoma of donor origin occurring in the porta hepatis of a transplanted liver. The New England Journal of Medicine, 329(1), 27–29.

    PubMed  CAS  Google Scholar 

  49. Ribas, Y., Rafecas, A., Figueras, J., et al. (1995). Post-transplant lymphoma in a liver allograft. Transplant International, 8(6), 488–491.

    PubMed  CAS  Google Scholar 

  50. Bodó, I., Peters, M., Radich, J. P., et al. (1999). Donor-derived acute promyelocytic leukemia in a liver-transplant recipient. The New England Journal of Medicine, 341(11), 807–813.

    PubMed  Google Scholar 

  51. Baron, P. W., Heneghan, M. A., Suhocki, P. V., et al. (2001). Biliary stricture secondary to donor B-cell lymphoma after orthotopic liver transplantation. Liver Transplantation, 7(1), 62–67.

    PubMed  CAS  Google Scholar 

  52. Hjelle, B., Evans-Holm, M., Yen, T. S., Garovoy, M., Guis, M., & Edman, J. C. (1989). A poorly differentiated lymphoma of donor origin in a renal allograft recipient. Transplantation, 47(6), 945–948.

    PubMed  CAS  Google Scholar 

  53. Meduri, G., Fromentin, L., Vieillefond, A., & Fries, D. (1991). Donor-related non-Hodgkins’s lymphoma in a renal allograft recipient. Transplantation Proceedings, 23(5), 2649–2649.

    PubMed  CAS  Google Scholar 

  54. Königsrainer, A., Steurer, W., Schumer, J., et al. (1993). Transmission of non-Hodgkin’s lymphoma through renal allografts—disastrous result of false diagnosis and inadequate information. Transplantation Proceedings, 25(6), 3075–3076.

    PubMed  Google Scholar 

  55. Zarranz Imirizaldu, J. J., Gomez Esteban, J. C., Rouco Axpe, I., et al. (2003). Post-transplantation HTLV-1 myelopathy in three recipients from a single donor. Journal of Neurology, Neurosurgery, and Psychiatry, 74(8), 1080–1084.

    PubMed  CAS  Google Scholar 

  56. Kawano, N., Shimoda, K., Ishikawa, F., et al. (2006). Adult T-cell leukemia development from a human T-cell leukemia virus type I carrier after a living-donor liver transplantation. Transplantation, 82(6), 840–843.

    PubMed  Google Scholar 

  57. Larghero, J., Garcia, J., & Gluckman, E. (2008). Sources and procurement of stem cells. In J. Apperley, E. Carreras, E. Gluckman, A. Gratwohl, & T. Masszi (Eds.), Haematopoietic stem cell transplantation. The EBMT handbook (5th ed., pp. 112–127). Paris: European School of Haematology.

    Google Scholar 

  58. Bodvarsson, S., Burlingham, W., Kusaka, S., et al. (2001). Donor-derived small cell lung carcinoma in a kidney transplant recipient. Cancer, 92(9), 2429–2434.

    PubMed  CAS  Google Scholar 

  59. Gerstenkorn, C., & Thomusch, O. (2003). Transmission of a pancreatic adenocarcinoma to a renal transplant recipient. Clinical Transplantation, 17(5), 473–476.

    PubMed  Google Scholar 

  60. Francès, C. (1998). Kaposi’s sarcoma after renal transplantation. Nephrology, Dialysis, Transplantation, 13(11), 2768–2773.

    PubMed  Google Scholar 

  61. Barozzi, P., Luppi, M., Facchetti, F., et al. (2003). Post-transplant Kaposi sarcoma originates from the seeding of donor-derived progenitors. Nature Medicine, 9(5), 554–561.

    PubMed  CAS  Google Scholar 

  62. Morse, J. H., Turcotte, J. G., Merion, R. M., et al. (1990). Development of a malignant tumor in a liver transplant graft procured from a donor with a cerebral neoplasm. Transplantation, 50(5), 875–877.

    PubMed  CAS  Google Scholar 

  63. Jonas, S., Bechstein, W. O., Lemmens, H. P., et al. (1996). Liver graft-transmitted glioblastoma multiforme. A case report and experience with 13 multiorgan donors suffering from primary cerebral neoplasia. Transplant International, 9(4), 426–429.

    PubMed  CAS  Google Scholar 

  64. Frank, S., Müller, J., Bonk, C., et al. (1998). Transmission of glioblastoma multiforme through liver transplantation. Lancet, 352(9121), 31.

    PubMed  CAS  Google Scholar 

  65. Old, S. E., Burnet, N. G., & Waite, K. J. (1998). Transmission of tumours by liver transplantation. Lancet, 352(9121), 822.

    PubMed  CAS  Google Scholar 

  66. Ruiz, J. C., Cotorruelo, J. G., Tudela, V., et al. (1993). Transmission of glioblastoma multiforme to two kidney transplant recipients from the same donor in the absence of ventricular shunt. Transplantation, 55(3), 682–683.

    PubMed  CAS  Google Scholar 

  67. Val-Bernal, F., Ruiz, J. C., Cotorruelo, J. G., & Arias, M. (1993). Glioblastoma multiforme of donor origin after renal transplantation: report of a case. Human Pathology, 24(11), 1256–1259.

    PubMed  CAS  Google Scholar 

  68. Armanios, M. Y., Grossman, S. A., Yang, S. C., et al. (2004). Transmission of glioblastoma multiforme following bilateral lung transplantation from an affected donor: case study and review of the literature. Neuro-Oncology, 6(3), 259–263.

    PubMed  Google Scholar 

  69. Bosmans, J. L., Ysebaert, D., De Cock, A. M., et al. (1997). Interferon-alpha and the cure of metastasis of a malignant meningioma in a kidney allograft recipient: A case report. Transplant Proceedings, 29(1–2), 838.

    CAS  Google Scholar 

  70. Lefrancois, N., Touraine, J. L., Cantarovich, D., et al. (1987). Transmission of medulloblastoma from cadaver donor to three organ transplant recipients. Transplant Proceedings, 19(1 Pt 3), 2242.

    CAS  Google Scholar 

  71. Detry, O., De Roover, A., de Leval, L., et al. (2005). Transmission of an undiagnosed sarcoma to recipients of kidney and liver grafts procured in a non-heart beating donor. Liver Transplantation, 11(6), 696–699.

    PubMed  Google Scholar 

  72. Healey, P. J., & Davis, C. L. (1998). Transmission of tumours by transplantation. Lancet, 352(9121), 2–3.

    PubMed  CAS  Google Scholar 

  73. Deeg, H. J., Sanders, J., Martin, P., et al. (1984). Secondary malignancies after marrow transplantation. Experimental Hematology, 12(8), 660–666.

    PubMed  CAS  Google Scholar 

  74. Avital, I., Moreira, A. L., Klimstra, D. S., et al. (2007). Donor-derived human bone marrow cells contribute to solid organ cancers developing after bone marrow transplantation. Stem Cells, 25(11), 2903–2909.

    PubMed  Google Scholar 

  75. Helg, C., Adatto, M., Salomon, D., et al. (1994). Kaposi’s sarcoma following allogeneic bone marrow transplantation. Bone Marrow Transplantation, 14(6), 999–1001.

    PubMed  CAS  Google Scholar 

  76. de Medeiros, B. C., Rezuke, W. N., Ricci, A., et al. (2000). Kaposi’s sarcoma following allogeneic hematopoietic stem cell transplantation for chronic myelogenous leukemia. Acta Haematologica, 104(2–3), 115–118.

    PubMed  Google Scholar 

  77. Palencia, S. I., Rodríguez-Peralto, J. L., Castaño, E., et al. (2003). Kaposi’s sarcoma after allogeneic peripheral blood stem cell transplantation. International Journal of Dermatology, 42(8), 647–649.

    PubMed  Google Scholar 

  78. Tamariz-Martel, R., Maldonado, M. S., Carrillo, R., et al. (2000). Kaposi’s sarcoma after allogeneic bone marrow transplantation in a child. Haematologica, 85(8), 884–885.

    PubMed  CAS  Google Scholar 

  79. Blum, B., & Benvenisty, N. (2008). The tumorigenicity of human embryonic stem cells. Advances in Cancer Research, 100, 133–158.

    PubMed  Google Scholar 

  80. Hentze, H., Soong, P. L., Wang, S. T., et al. (2009). Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Research, 2, 198–210.

    Google Scholar 

  81. Bjorklund, L. M., Sánchez-Pernaute, R., Chung, S., et al. (2002). Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proceedings of the National Academy of Sciences of the United States of America, 99(4), 2344–2349.

    PubMed  CAS  Google Scholar 

  82. Erdö, F., Bührle, C., Blunk, J., et al. (2003). Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. Journal of Cerebral Blood Flow and Metabolism, 23(7), 780–785.

    PubMed  Google Scholar 

  83. Schulz, T. C., Noggle, S. A., Palmarini, G. M., et al. (2004). Differentiation of human embryonic stem cells to dopaminergic neurons in serum-free suspension culture. Stem Cells, 22(7), 1218–1238.

    PubMed  CAS  Google Scholar 

  84. Thinyane, K., Baier, P. C., Schindehutte, J., et al. (2005). Fate of pre-differentiated mouse embryonic stem cells transplanted in unilaterally 6-hydroxydopamine lesioned rats: histological characterization of the grafted cells. Brain Research, 1045(1–2), 80–87.

    PubMed  CAS  Google Scholar 

  85. Brederlau, A., Correia, A. S., Anisimov, S. V., et al. (2006). Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells, 24(6), 1433–1440.

    PubMed  CAS  Google Scholar 

  86. Chinzei, R., Tanaka, Y., Shimizu-Saito, K., et al. (2002). Embryoid-body cells derived from a mouse embryonic stem cell line show differentiation into functional hepatocytes. Hepatology, 36(1), 22–29.

    PubMed  Google Scholar 

  87. Yamamoto, H., Quinn, G., Asari, A., et al. (2003). Differentiation of embryonic stem cells into hepatocytes: biological functions and therapeutic application. Hepatology, 37(5), 983–993.

    PubMed  CAS  Google Scholar 

  88. Fair, J. H., Cairns, B. A., Lapaglia, M. A., et al. (2005). Correction of factor IX deficiency in mice by embryonic stem cells differentiated in vitro. Proceedings of the National Academy of Sciences of the United States of America, 102(8), 2958–2963.

    PubMed  CAS  Google Scholar 

  89. Wakitani, S., Takaoka, K., Hattori, T., et al. (2003). Embryonic stem cells injected into the mouse knee joint form teratomas and subsequently destroy the joint. Rheumatology (Oxford), 42(1), 162–165.

    CAS  Google Scholar 

  90. Cao, F., Lin, S., Xie, X., et al. (2006). In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation, 113(7), 1005–1014.

    PubMed  Google Scholar 

  91. Kolossov, E., Bostani, T., Roell, W., et al. (2006). Engraftment of engineered ES cell-derived cardiomyocytes but not BM cells restores contractile function to the infarcted myocardium. The Journal of Experimental Medicine, 203(10), 2315–2327.

    PubMed  CAS  Google Scholar 

  92. Nussbaum, J., Minami, E., Laflamme, M. A., et al. (2007). Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. The FASEB Journal, 21(7), 1345–1357.

    PubMed  CAS  Google Scholar 

  93. Takeshita, F., Kodama, M., Yamamoto, H., et al. (2006). Streptozotocin-induced partial beta cell depletion in nude mice without hyperglycaemia induces pancreatic morphogenesis in transplanted embryonic stem cells. Diabetologia, 49(12), 2948–2958.

    PubMed  CAS  Google Scholar 

  94. Baier, P. C., Schindehütte, J., Thinyane, K., et al. (2004). Behavioral changes in unilaterally 6-hydroxy-dopamine lesioned rats after transplantation of differentiated mouse embryonic stem cells without morphological integration. Stem Cells, 22(3), 396–404.

    PubMed  CAS  Google Scholar 

  95. Xie, C. Q., Zhang, J., Xiao, Y., et al. (2007). Transplantation of human undifferentiated embryonic stem cells into a myocardial infarction rat model. Stem Cells and Development, 16(1), 25–29.

    PubMed  CAS  Google Scholar 

  96. Moriya, K., Yoshikawa, M., Ouji, Y., et al. (2008). Embryonic stem cells reduce liver fibrosis in CCl4-treated mice. International Journal of Experimental Pathology, 89(6), 401–409.

    PubMed  Google Scholar 

  97. Cao, F., van der Bogt, K. E., Sadrzadeh, A., et al. (2007). Spatial and temporal kinetics of teratoma formation from murine embryonic stem cell transplantation. Stem Cells and Development, 16(6), 883–891.

    PubMed  CAS  Google Scholar 

  98. Dressel, R., Schindehütte, J., Kuhlmann, T., et al. (2008). The tumorigenicity of mouse embryonic stem cells and in vitro differentiated neuronal cells is controlled by the recipients’ immune response. PLoS One, 3(7), e2622.

    PubMed  Google Scholar 

  99. Amariglio, N., Hirshberg, A., Scheithauer, B. W., et al. (2009). Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Medicine, 6(2), e1000029.

    PubMed  Google Scholar 

  100. Cowan, C. A., Klimanskaya, I., McMahon, J., et al. (2004). Derivation of embryonic stem-cell lines from human blastocysts. The New England Journal of Medicine, 350(13), 1353–1356.

    PubMed  CAS  Google Scholar 

  101. Draper, J. S., Smith, K., Gokhale, P., et al. (2004). Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nature Biotechnology, 22(1), 53–54.

    PubMed  CAS  Google Scholar 

  102. Maitra, A., Arking, D. E., Shivapurkar, N., et al. (2005). Genomic alterations in cultured human embryonic stem cells. Nature Genetics, 37(10), 1099–1103.

    PubMed  CAS  Google Scholar 

  103. Herszfeld, D., Wolvetang, E., Langton-Bunker, E., et al. (2006). CD30 is a survival factor and a biomarker for transformed human pluripotent stem cells. Nature Biotechnology, 24(3), 351–357.

    PubMed  CAS  Google Scholar 

  104. Baker, D. E., Harrison, N. J., Maltby, E., et al. (2007). Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nature Biotechnology, 25(2), 207–215.

    PubMed  CAS  Google Scholar 

  105. Bernardo, M. E., Zaffaroni, N., Novara, F., et al. (2007). Human bone marrow derived mesenchymal stem cells do not undergo transformation after long-term in vitro culture and do not exhibit telomere maintenance mechanisms. Cancer Research, 67(19), 9142–9149.

    PubMed  CAS  Google Scholar 

  106. Serakinci, N., Guldberg, P., Burns, J. S., et al. (2004). Adult human mesenchymal stem cell as a target for neoplastic transformation. Oncogene, 23(29), 5095–5098.

    PubMed  CAS  Google Scholar 

  107. Grinchuk, T. M., Ivantsov, K. M., Aleklseenko, L. L., et al. (2008). Characterization of cultured murine mesenchymal stem cell line expressing GFP. Tsitologiia, 50(12), 1030–1035.

    PubMed  CAS  Google Scholar 

  108. Rubio, D., Garcia-Castro, J., Martín, M. C., et al. (2005). Spontaneous human adult stem cell transformation. Cancer Research, 65(8), 3035–3039.

    PubMed  CAS  Google Scholar 

  109. Miura, M., Miura, Y., Padilla-Nash, H. M., et al. (2006). Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells, 24(4), 1095–1103.

    PubMed  Google Scholar 

  110. Popov, B. V., Petrov, N. S., Mikhaĭlov, V. M., et al. (2009). Spontaneous transformation and immortalization of mesenchymal stem cells in vitro. Tsitologiia, 51(2), 91–102.

    PubMed  CAS  Google Scholar 

  111. Roy, N. S., Cleren, C., Singh, S. K., et al. (2006). Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nature Medicine, 12(11), 1259–1268.

    PubMed  CAS  Google Scholar 

  112. Keene, C. D., Chang, R. C., Leverenz, J. B., et al. (2009). A patient with Huntington’s disease and long-surviving fetal neural transplants that developed mass lesions. Acta Neuropathologica, 117(3), 329–338.

    PubMed  Google Scholar 

  113. Christophersen, N. S., & Brundin, P. (2007). Large stem cell grafts could lead to erroneous interpretations of behavioral results? Nature Medicine, 13(2), 118.

    PubMed  CAS  Google Scholar 

  114. Leor, J., Gerecht, S., Cohen, S., et al. (2007). Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart, 93(10), 1278–1284.

    PubMed  Google Scholar 

  115. Freed, C. R., Greene, P. E., Breeze, R. E., et al. (2001). Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. The New England Journal of Medicine, 344(10), 710–719.

    PubMed  CAS  Google Scholar 

  116. Hagell, P., Piccini, P., Björklund, A., et al. (2002). Dyskinesias following neural transplantation in Parkinson’s disease. Nature Neuroscience, 5(7), 627–628.

    PubMed  CAS  Google Scholar 

  117. Olanow, C. W., Goetz, C. G., Kordower, J. H., et al. (2003). A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Annals of Neurology, 54(3), 403–414.

    PubMed  Google Scholar 

  118. Piccini, P., Pavese, N., Hagell, P., et al. (2005). Factors affecting the clinical outcome after neural transplantation in Parkinson’s disease. Brain, 128(Pt 12), 2977–2986.

    PubMed  Google Scholar 

  119. Ben-Hur, T., Idelson, M., Khaner, H., et al. (2004). Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats. Stem Cells, 22(7), 1246–1255.

    PubMed  Google Scholar 

  120. Zeng, X., Cai, J., Chen, J., et al. (2004). Dopaminergic differentiation of human embryonic stem cells. Stem Cells, 22(6), 925–940.

    PubMed  CAS  Google Scholar 

  121. Sonntag, K. C., Pruszak, J., Yoshizaki, T., et al. (2007). Enhanced yield of neuroepithelial precursors and midbrain-like dopaminergic neurons from human embryonic stem cells using the bone morphogenic protein antagonist noggin. Stem Cells, 25(2), 411–418.

    PubMed  CAS  Google Scholar 

  122. Yang, M., Donaldson, A. E., Marshall, C. E., et al. (2004). Studies on the differentiation of dopaminergic traits in human neural progenitor cells in vitro and in vivo. Cell Transplantation, 13(5), 535–547.

    PubMed  Google Scholar 

  123. Brundin, P., Barbin, G., Strecker, R. E., et al. (1988). Survival and function of dissociated rat dopamine neurones grafted at different developmental stages or after being cultured in vitro. Brain Research, 467(2), 233–243.

    PubMed  CAS  Google Scholar 

  124. Brundin, P., Karlsson, J., Emgard, M., et al. (2000). Improving the survival of grafted dopaminergic neurons: a review over current approaches. Cell Transplantation, 9(2), 179–195.

    PubMed  CAS  Google Scholar 

  125. Iacovitti, L., Donaldson, A. E., Marshall, C. E., et al. (2007). A protocol for the differentiation of human embryonic stem cells into dopaminergic neurons using only chemically defined human additives: studies in vitro and in vivo. Brain Research, 1127(1), 19–25.

    PubMed  CAS  Google Scholar 

  126. Ko, J. Y., Lee, H. S., Park, C. H., et al. (2009). Conditions for tumor-free and dopamine neuron-enriched grafts after transplanting human ES cell-derived neural precursor cells. Molecular Therapy, 17(10), 1761–1770.

    PubMed  CAS  Google Scholar 

  127. Chung, S., Shin, B. S., Hedlund, E., et al. (2006). Genetic selection of sox1gfp-expressing neural precursors removes residual tumorigenic pluripotent stem cells and attenuates tumor formation after transplantation. Journal of Neurochemistry, 97(5), 1467–1480.

    PubMed  CAS  Google Scholar 

  128. Fukuda, H., Takahashi, J., Watanabe, K., et al. (2006). Fluorescence-activated cell sorting-based purification of embryonic stem cell-derived neural precursors averts tumor formation after transplantation. Stem Cells, 24(3), 763–771.

    PubMed  CAS  Google Scholar 

  129. Pruszak, J., Sonntag, K. C., Aung, M. H., Sanchez-Pernaute, R., & Isacson, O. (2007). Markers and methods for cell sorting of human embryonic stem cell-derived neural cell populations. Stem Cells, 25(9), 2257–2268.

    PubMed  Google Scholar 

  130. Anisimov, S. V., Christophersen, N. S., Correia, A. S., Li, J. Y., & Brundin, P. (2007). “Neurostem chip”: a novel highly specialized tool to study neural differentiation pathways in human stem cells. BMC Genomics, 8, 46.

    PubMed  Google Scholar 

  131. Leary, J. F. (2005). Ultra high-speed sorting. Cytometry Part A, 67(2), 76–85.

    Google Scholar 

  132. Wang, M. M., Tu, E., Raymond, D. E., et al. (2005). Microfluidic sorting of mammalian cells by optical force switching. Nature Biotechnology, 23(1), 83–87.

    PubMed  CAS  Google Scholar 

  133. Schuldiner, M., Itskovitz-Eldor, J., & Benvenisty, N. (2003). Selective ablation of human embryonic stem cells expressing a “Suicide” Gene. Stem Cells, 21(3), 257–265.

    PubMed  CAS  Google Scholar 

  134. Jung, J., Hackett, N. R., Pergolizzi, R. G., et al. (2007). Ablation of tumor-derived stem cells transplanted to the central nervous system by genetic modification of embryonic stem cells with a suicide gene. Human Gene Therapy, 18(12), 1182–1192.

    PubMed  CAS  Google Scholar 

  135. Cao, F., Drukker, M., Lin, S., et al. (2007). Molecular imaging of embryonic stem cell misbehavior and suicide gene ablation. Cloning and Stem Cells, 9(1), 107–117.

    PubMed  CAS  Google Scholar 

  136. Bieberich, E., Mackinnon, S., Silva, J., & Yu, R. K. (2001). Regulation of apoptosis during neuronal differentiation by ceramide and b-series complex gangliosides. The Journal of Biological Chemistry, 276(48), 44396–44404.

    PubMed  CAS  Google Scholar 

  137. Bieberich, E., Mackinnon, S., Silva, J., Noggle, S., & Condie, B. G. (2003). Regulation of cell death in mitotic neural progenitor cells by asymmetric distribution of prostate apoptosis response 4 (par-4) and simultaneous elevation of endogenous ceramide. The Journal of Cell Biology, 162(3), 469–479.

    PubMed  CAS  Google Scholar 

  138. Bieberich, E., Silva, J., Wang, G., Krishnamurthy, K., & Condie, B. G. (2004). Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in es cell-derived neural transplants. The Journal of Cell Biology, 167(4), 723–734.

    PubMed  CAS  Google Scholar 

  139. Choo, A. B., Tan, H. L., Ang, S. N., et al. (2008). Selection against undifferentiated human embryonic stem cells by a cytotoxic antibody recognizing podocalyxin-like protein-1. Stem Cells, 26(6), 1454–1463.

    PubMed  CAS  Google Scholar 

  140. Kawasaki, H., Mizuseki, K., Nishikawa, S., et al. (2000). Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron, 28(1), 31–40.

    PubMed  CAS  Google Scholar 

  141. Sasai, Y. (2002). Generation of dopaminergic neurons from embryonic stem cells. Journal of Neurology, 249(Suppl 2), II41–II44.

    PubMed  Google Scholar 

  142. Svensson, M., Hakansson, A., Mossberg, A. K., Linse, S., & Svanborg, C. (2000). Conversion of alpha-lactalbumin to a protein inducing apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 97(8), 4221–4226.

    PubMed  CAS  Google Scholar 

  143. Hallgren, O., Aits, S., Brest, P., et al. (2008). Apoptosis and tumor cell death in response to hamlet (human alpha-lactalbumin made lethal to tumor cells). Advances in Experimental Medicine and Biology, 606, 217–240.

    PubMed  Google Scholar 

  144. Svanborg, C., Agerstam, H., Aronson, A., et al. (2003). Hamlet kills tumor cells by an apoptosis-like mechanism–cellular, molecular, and therapeutic aspects. Advances in Cancer Research, 88, 1–29.

    PubMed  CAS  Google Scholar 

  145. Fischer, W., Gustafsson, L., Mossberg, A. K., et al. (2004). Human alpha-lactalbumin made lethal to tumor cells (hamlet) kills human glioblastoma cells in brain xenografts by an apoptosis-like mechanism and prolongs survival. Cancer Research, 64(6), 2105–2112.

    PubMed  CAS  Google Scholar 

  146. Gustafsson, L., Hallgren, O., Mossberg, A. K., et al. (2005). Hamlet kills tumor cells by apoptosis: Structure, cellular mechanisms, and therapy. The Journal of Nutrition, 135(5), 1299–1303.

    PubMed  CAS  Google Scholar 

  147. Mossberg, A. K., Wullt, B., Gustafsson, L., et al. (2007). Bladder cancers respond to intravesical instillation of hamlet (human alpha-lactalbumin made lethal to tumor cells). International Journal of Cancer, 121(6), 1352–1359.

    CAS  Google Scholar 

  148. Deeg, H. J., Bazar, L., Sigaroudinia, M., & Cottler-Fox, M. (1989). Ultraviolet b light inactivates bone marrow t lymphocytes but spares hematopoietic precursor cells. Blood, 73(2), 369–371.

    PubMed  CAS  Google Scholar 

  149. Wagemaker, G. (1995). Heterogeneity of radiation sensitivity of hemopoietic stem cell subsets. Stem Cells, 13(Suppl 1), 257–260.

    PubMed  Google Scholar 

  150. Azuma, H., Ikebuchi, K., Yamaguchi, M., et al. (2000). Comparison of sensitivity to ultraviolet b irradiation between human lymphocytes and hematopoietic stem cells. Blood, 96(7), 2632–2634.

    PubMed  CAS  Google Scholar 

  151. Limoli, C. L., Giedzinski, E., Rola, R., et al. (2004). Radiation response of neural precursor cells: Linking cellular sensitivity to cell cycle checkpoints, apoptosis and oxidative stress. Radiation Research, 161(1), 17–27.

    PubMed  CAS  Google Scholar 

  152. Yu, Y., Cittelly, D., Wu, P., & Cornforth, M. N. (2005). Inhibition of human neural stem cell differentiation by γ–rays. Bioastronautics investigator’s workshop; Galveston, TX, USA. Abstract 166. Available from: http://www.dsls.usra.edu/meetings/bio2005/pdf/SRPosters/SRPosters.pdf

  153. Encinas, J. M., Vazquez, M. E., Switzer, R. C., et al. (2008). Quiescent adult neural stem cells are exceptionally sensitive to cosmic radiation. Experimental Neurology, 210(1), 274–279.

    PubMed  Google Scholar 

  154. You, Y., Bersgtram, R., Klemm, M., et al. (1998). Utility of c57bl/6j x 129/svjae embryonic stem cells for generating chromosomal deletions: Tolerance to gamma radiation and microsatellite polymorphism. Mammalian Genome, 9(3), 232–234.

    PubMed  CAS  Google Scholar 

  155. Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111.

    PubMed  CAS  Google Scholar 

  156. Todaro, M., Alea, M. P., Di Stefano, A. B., et al. (2007). Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell, 1(4), 389–402.

    PubMed  CAS  Google Scholar 

  157. Rich, J. N. (2007). Cancer stem cells in radiation resistance. Cancer Research, 67(19), 8980–8984.

    PubMed  CAS  Google Scholar 

  158. Vlashi, E., McBride, W. H., & Pajonk, F. (2009). Radiation responses of cancer stem cells. Journal of Cellular Biochemistry, 108(2), 339–342.

    PubMed  CAS  Google Scholar 

  159. Hara, A., Niwa, M., Kumada, M., et al. (2006). Intraocular injection of folate antagonist methotrexate induces neuronal differentiation of embryonic stem cells transplanted in the adult mouse retina. Brain Research, 1085(1), 33–42.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are most grateful to Prof. Patrik Brundin and Asst. Prof. Jia-Yi Li, (Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Sweden) for years of productive collaboration in the field of developing experimental stem cell-based therapeutic approaches for advanced Parkinson’s Disease. S.V.A.’s work is supported by the Russian Federal Agency for Science and Innovation (State Contract № 02.527.11.0007); MCB Program, Russian Academy of Sciences; NordForsk (Grant No. 080250) and European Community’s 7th Framework Programme (FP7/2007–2013) under grant agreement n°241558 (SICA-HF); A.M.’s work is supported by The Swedish Research Council, Swedish Parkinson Foundation, and Swedish Institute.

Conflict of interest

The authors declare no potential conflicts of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Anisimov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anisimov, S.V., Morizane, A. & Correia, A.S. Risks and Mechanisms of Oncological Disease Following Stem Cell Transplantation. Stem Cell Rev and Rep 6, 411–424 (2010). https://doi.org/10.1007/s12015-010-9134-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-010-9134-5

Keywords

Navigation