Skip to main content
Log in

Influence of Plasma and Cerebrospinal Fluid Levels of Endothelin-1 and No in Reducing Cerebral Vasospasm after Subarachnoid Hemorrhage During Treatment with Mild Hypothermia, in a Dog Model

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Using vascular heat-exchange controller implemented mild hypothermia treatment, the authors established the cerebral vasospasm model in which blood was injected twice into dog’s foramen magnum; and it was discussed the influence of the concentration of endothelin-1 and NO in blood plasma and cerebrospinal fluid through continuing treatment of mild hypothermia at different times in secondary brain vasospasm model after subarachnoid hemorrhage. Thirty healthy mongrel dogs were randomly divided into five groups; artificial cerebrospinal fluid group (group A), normal temperature control group (group C), mild hypothermia 8 h group (group H1), mild hypothermia 16 h group (group H2), and mild hypothermia 32 h group (group H3). The authors injected the artificial CSF into dog’s foramen magnum in group A while the other four groups were injected with autologous arterial blood. The normal group’s temperature maintained 38.5°C. The authors set the temperature at 33.5°C in mild hypothermia groups and this was maintained for 8, 16, and 32 h, respectively. ET-1 and NO levels in the cerebrospinal fluid and plasma were assayed in each group on days 0, 7, 14, and 21. Then the changes of the diameter of blood vessels of cerebral basilar artery and overall performance categories score in each group through application of CT angiography were recorded. In the cerebral vasospasm model which was constructed by injecting the blood to dog twice, mild hypothermia treatment, through the application of vascular heat-exchange controller, could reduce cerebral vasospasm. It was observed that the duration of the mild hypothermia is directly proportional to the longer duration of the relieving of cerebral vasospasm. The reciprocal changes observed in the levels of ET-1 and NO in cerebrospinal fluid and plasma revealed that it might be possible to reduce the cerebral vasospasm by regulating the rising amplitude of ET-1 and the decrease in NO in CSF and plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mayberg, M. R. (1998). Cerebral vasospasm. Neurosurgery Clinics of North America, 9, 615–627.

    PubMed  CAS  Google Scholar 

  2. Levati, A., Solaini, C., & Boselli, L. (1998). Prevention and treatment of vasospasm. Journal of Neurosurgical Sciences, 42, 27–31.

    PubMed  CAS  Google Scholar 

  3. Kastner, S., Oertel, M. F., Scharbrodt, W., Krause, M., Boker, D. K., et al. (2005). Endothelin-1 in plasma, cisternal CSF and microdialysate following aneurysmal SAH. Acta Neurochir (Wien), 147, 1271–1279. discussion 1279.

    Article  CAS  Google Scholar 

  4. Bernard, S. A., Jones, B. M., & Horne, M. K. (1997). Clinical trial of induced hypothermia in comatose survivors of out-of-hospital cardiac arrest. Annals of Emergency Medicine, 30, 146–153.

    Article  PubMed  CAS  Google Scholar 

  5. Yanagawa, Y., Ishihara, S., Norio, H., Takino, M., Kawakami, M., et al. (1998). Preliminary clinical outcome study of mild resuscitative hypothermia after out-of-hospital cardiopulmonary arrest. Resuscitation, 39, 61–66.

    Article  PubMed  CAS  Google Scholar 

  6. Zeiner, A., Holzer, M., Sterz, F., Behringer, W., Schorkhuber, W., et al. (2000). Mild resuscitative hypothermia to improve neurological outcome after cardiac arrest. A clinical feasibility trial. Hypothermia After Cardiac Arrest (HACA) Study Group. Stroke, 31, 86–94.

    Article  PubMed  CAS  Google Scholar 

  7. Marion, D. W., Penrod, L. E., Kelsey, S. F., Obrist, W. D., Kochanek, P. M., et al. (1997). Treatment of traumatic brain injury with moderate hypothermia. New England Journal of Medicine, 336, 540–546.

    Article  PubMed  CAS  Google Scholar 

  8. Popovic, R., Liniger, R., & Bickler, P. E. (2000). Anesthetics and mild hypothermia similarly prevent hippocampal neuron death in an in vitro model of cerebral ischemia. Anesthesiology, 92, 1343–1349.

    Article  PubMed  CAS  Google Scholar 

  9. Doufas, A. G., Akca, O., Barry, A., Petrusca, D. A., Suleman, M. I., et al. (2002). Initial experience with a novel heat-exchanging catheter in neurosurgical patients. Anesthesia and Analgesia, 95, 1752–1756. table of contents.

    Article  PubMed  Google Scholar 

  10. Steinberg, G. K., Ogilvy, C. S., Shuer, L. M., Connolly, E. S, Jr., Solomon, R. A., et al. (2004). Comparison of endovascular and surface cooling during unruptured cerebral aneurysm repair. Neurosurgery, 55, 307–314. discussion 314–305.

    Article  PubMed  Google Scholar 

  11. Mascia, L., Fedorko, L., Stewart, D. J., Mohamed, F., terBrugge, K., et al. (2001). Temporal relationship between endothelin-1 concentrations and cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage. Stroke, 32, 1185–1190.

    Article  PubMed  CAS  Google Scholar 

  12. Liu, Z., Zheng, J. F., Yang, L. Q., Yi, L., & Hu, B. (2007). Effects of sinomenine on NO/nNOS system in cerebellum and spinal cord of morphine-dependent and withdrawal mice. Sheng Li Xue Bao, 59, 285–292.

    PubMed  CAS  Google Scholar 

  13. Drury, P. P., Bennet, L., & Gunn, A. J. (2010). Mechanisms of hypothermic neuroprotection. Seminars in Fetal and Neonatal Medicine, 15, 287–292.

    Article  PubMed  Google Scholar 

  14. Pool, J. L., & Kessler, L. A. (1958). Mechanism and control of centrally induced cardiac irregularities during hypothermia. I. Clinical observations. Journal of Neurosurgery, 15, 52–64.

    Article  PubMed  CAS  Google Scholar 

  15. Webb, W. R., Deguzman, V. C., Grogan, J. B., & Artz, C. P. (1962). Hypothermia: Its effects upon hematologic clearance in experimentally induced staphylococcal bacteremia. Surgery, 52, 643–647.

    PubMed  CAS  Google Scholar 

  16. Busto, R., Dietrich, W. D., Globus, M. Y., Valdes, I., Scheinberg, P., et al. (1987). Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. Journal of Cerebral Blood Flow and Metabolism, 7, 729–738.

    Article  PubMed  CAS  Google Scholar 

  17. Hoedemaekers, C. W., Ezzahti, M., Gerritsen, A., & van der Hoeven, J. G. (2007). Comparison of cooling methods to induce and maintain normo- and hypothermia in intensive care unit patients: a prospective intervention study. Critical Care, 11, R91.

    Article  PubMed  Google Scholar 

  18. Al-Senani, F. M., Graffagnino, C., Grotta, J. C., Saiki, R., Wood, D., et al. (2004). A prospective, multicenter pilot study to evaluate the feasibility and safety of using the CoolGard System and Icy catheter following cardiac arrest. Resuscitation, 62, 143–150.

    Article  PubMed  Google Scholar 

  19. Kandzari, D. E., Chu, A., Brodie, B. R., Stuckey, T. A., Hermiller, J. B., et al. (2004). Feasibility of endovascular cooling as an adjunct to primary percutaneous coronary intervention (results of the LOWTEMP pilot study). American Journal of Cardiology, 93, 636–639.

    Article  PubMed  Google Scholar 

  20. Koide, M., Nishizawa, S., Ohta, S., Yokoyama, T., & Namba, H. (2002). Chronological changes of the contractile mechanism in prolonged vasospasm after subarachnoid hemorrhage: from protein kinase C to protein tyrosine kinase. Neurosurgery, 51, 1468–1474. discussion 1474–1466.

    PubMed  Google Scholar 

  21. Nishizawa, S., Obara, K., Koide, M., Nakayama, K., Ohta, S., et al. (2003). Attenuation of canine cerebral vasospasm after subarachnoid hemorrhage by protein kinase C inhibitors despite augmented phosphorylation of myosin light chain. Journal of Vascular Research, 40, 169–178.

    Article  PubMed  CAS  Google Scholar 

  22. Leung, J. W., Chung, S. S., & Chung, S. K. (2009). Endothelial endothelin-1 over-expression using receptor tyrosine kinase tie-1 promoter leads to more severe vascular permeability and blood brain barrier breakdown after transient middle cerebral artery occlusion. Brain Research, 1266, 121–129.

    Article  PubMed  CAS  Google Scholar 

  23. Didier, N., Romero, I. A., Creminon, C., Wijkhuisen, A., Grassi, J., et al. (2003). Secretion of interleukin-1beta by astrocytes mediates endothelin-1 and tumour necrosis factor-alpha effects on human brain microvascular endothelial cell permeability. Journal of Neurochemistry, 86, 246–254.

    Article  PubMed  CAS  Google Scholar 

  24. Petrov, T., Steiner, J., Braun, B., & Rafols, J. A. (2002). Sources of endothelin-1 in hippocampus and cortex following traumatic brain injury. Neuroscience, 115, 275–283.

    Article  PubMed  CAS  Google Scholar 

  25. Ohlstein, E. H., & Storer, B. L. (1992). Oxyhemoglobin stimulation of endothelin production in cultured endothelial cells. Journal of Neurosurgery, 77, 274–278.

    Article  PubMed  CAS  Google Scholar 

  26. Juvela, S. (2000). Plasma endothelin concentrations after aneurysmal subarachnoid hemorrhage. Journal of Neurosurgery, 92, 390–400.

    Article  PubMed  CAS  Google Scholar 

  27. Seifert, V., Loffler, B. M., Zimmermann, M., Roux, S., & Stolke, D. (1995). Endothelin concentrations in patients with aneurysmal subarachnoid hemorrhage. Correlation with cerebral vasospasm, delayed ischemic neurological deficits, and volume of hematoma. Journal of Neurosurgery, 82, 55–62.

    Article  PubMed  CAS  Google Scholar 

  28. Mizuno, Y., Isotani, E., Ohno, K., Nagai, A., Imamura, M., et al. (2008). Involvement of accumulated NOS inhibitors and endothelin-1, enhanced arginase, and impaired DDAH activities in pulmonary dysfunction following subarachnoid hemorrhage in the rabbit. Vascular Pharmacology, 48, 21–31.

    Article  PubMed  CAS  Google Scholar 

  29. Nishizawa, S., Chen, D., Yokoyama, T., Yokota, N., & Otha, S. (2000). Endothelin-1 initiates the development of vasospasm after subarachnoid haemorrhage through protein kinase C activation, but does not contribute to prolonged vasospasm. Acta Neurochirurgica (Wien), 142, 1409–1415.

    Article  CAS  Google Scholar 

  30. Alabadi, J. A., Torregrosa, G., Miranda, F. J., Salom, J. B., Centeno, J. M., et al. (1997). Impairment of the modulatory role of nitric oxide on the endothelin-1-elicited contraction of cerebral arteries: A pathogenetic factor in cerebral vasospasm after subarachnoid hemorrhage? Neurosurgery, 41, 245–252. discussion 252–243.

    Article  PubMed  CAS  Google Scholar 

  31. Neuschmelting, V., Marbacher, S., Fathi, A. R., Jakob, S. M., & Fandino, J. (2009). Elevated level of endothelin-1 in cerebrospinal fluid and lack of nitric oxide in basilar arterial plasma associated with cerebral vasospasm after subarachnoid haemorrhage in rabbits. Acta Neurochirurgica (Wien), 151, 795–801. discussion 801-792.

    Article  Google Scholar 

  32. Jung, C. S., Oldfield, E. H., Harvey-White, J., Espey, M. G., Zimmermann, M., et al. (2007). Association of an endogenous inhibitor of nitric oxide synthase with cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage. Journal of Neurosurgery, 107, 945–950.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-ping Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Zp., Chen, Hs. & Wang, FX. Influence of Plasma and Cerebrospinal Fluid Levels of Endothelin-1 and No in Reducing Cerebral Vasospasm after Subarachnoid Hemorrhage During Treatment with Mild Hypothermia, in a Dog Model. Cell Biochem Biophys 61, 137–143 (2011). https://doi.org/10.1007/s12013-011-9170-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9170-z

Keywords

Navigation