Skip to main content

Advertisement

Log in

Element Concentrations and Element Ratios in Antler and Pedicle Bone of Yearling Red Deer (Cervus elaphus) Stags—a Quantitative X-ray Fluorescence Study

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The present study compared the concentrations of different elements (Ca, P, Mg, Sr, Ba, K, S, Zn, Mn) as well as Ca/P, Ca/Mg, Sr/Ca, and Ba/Ca ratios in hard antler and pedicle bone of yearling red deer stags (n = 11). Pedicles showed higher concentrations of calcium and phosphorus and a higher Ca/Mg ratio than antlers, while antlers exhibited higher concentrations of potassium, sulfur, and manganese as well as higher Ca/P, Sr/Ca, and Ba/Ca ratios. The findings indicate that antlers are less mineralized and show less maturation of their bone mineral than pedicles. Antlers also showed a higher intrasample variation of mineralization than pedicles, which can be related to the shorter life span of the (deciduous) antlers compared to the (permanent) pedicles. It is suggested that antler bone formation is stopped before the theoretically possible degree of mineralization and mineral maturation is reached, resulting in antler biomechanical properties (high bending strength and work to fracture) that are well suited for their role in intraspecific fighting. It is further suggested that the differences in Sr/Ca and Ba/Ca ratios of antlers and pedicles are related to the dietary shift from milk to vegetation in combination with an increasing intestinal discrimination against Sr and Ba with age, resulting in a less marked difference in these ratios than would be expected based on the dietary shift alone. The findings of our study underscore the suitability of antlers and pedicles as models of bone mineralization and the influence of different animal-related and/or external factors on this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Davis EB, Brakora KA, Lee AH (2011) Evolution of ruminant headgear: a review. Proc R Soc B 278:2857–2865

    Article  PubMed Central  PubMed  Google Scholar 

  2. Goss RJ (1983) Deer antlers: regeneration, function, and evolution. Academic Press, New York

  3. Muir PD, Sykes AR, Barrell GK (1988) Changes in blood content and histology during growth of antlers in red deer (Cervus elaphus) and their relationship to plasma testosterone levels. J Anat 158:31–42

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Brown RD (1990) Nutrition and antler development. In: Bubenik GA, Bubenik AB (eds) Horns, pronghorns and antlers. Springer, New York, pp 426–441

    Chapter  Google Scholar 

  5. Bubenik GA (1990) Neuroendocrine regulation of the antler cycle. In: Bubenik GA, Bubenik AB (eds) Horns, pronghorns and antlers. Springer, New York, pp 265–297

    Chapter  Google Scholar 

  6. Suttie JM, Fennessy PF, Lapwood KR, Corson ID (1995) Role of steroids in antler growth of red deer stags. J Exp Zool 271:120–130

    Article  CAS  PubMed  Google Scholar 

  7. Kierdorf U, Kierdorf H, Schultz M, Rolf HJ (2004) Histological structure of antlers in castrated male fallow deer (Dama dama). Anat Rec 281A:1352–1362

    Article  Google Scholar 

  8. Landete-Castillejos T, Currey JD, Estevez JA, Gaspar-López E, Garcia A, Gallego L (2007) Influence of physiological effort of growth and chemical composition on antler biomechanical properties. Bone 41:794–803

    Article  CAS  PubMed  Google Scholar 

  9. Landete-Castillejos T, Currey JD, Ceacero F, Garcia AJ, Gallego L, Gomez S (2012) Does nutrition affect bone porosity and mineral distribution in deer antlers? The relationship between histology, mechanical properties and mineral composition. Bone 50:245–254

    Article  CAS  PubMed  Google Scholar 

  10. Landete-Castillejos T, Estevez JA, Ceacero F, Garcia AJ, Gallego L (2012) A review of factors affecting antler composition and mechanics. Front Biosci E4:2328–2339

    Article  CAS  Google Scholar 

  11. Estevez JA, Landete-Castillejos T, Martinez A, Garcia AJ, Ceacero F, Gaspar-López E, Calatayud A, Gallego L (2008) Antler mineral composition of Iberian red deer Cervus elaphus hispanicus is related to mineral profile of diet. Acta Theriol 54:235–242

    Article  Google Scholar 

  12. Price JS, Allen S, Faucheux C, Althnaian T, Mount JG (2005) Deer antlers: a zoological curiosity or the key to understanding organ regeneration in mammals. J Anat 207:603–618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kierdorf U, Kierdorf H, Szuwart T (2007) Deer antler regeneration: cells, concepts, and controversies. J Morphol 268:726–738

    Article  PubMed  Google Scholar 

  14. Kierdorf U, Kierdorf H (2012) Antler regrowth as a form of epimorphic regeneration in vertebrates—a comparative view. Front Biosci E4:1606–1624

    Article  CAS  Google Scholar 

  15. Li C (2012) Deer antler regeneration: a stem cell-based epimorphic process. Birth Defects Res (Pt C) 96:51–62

    Article  CAS  Google Scholar 

  16. Currey JD, Landete-Castillejos T, Estevez J, Ceacero F, Olguin A, Garcia A, Gallego L (2009) The mechanical properties of red deer antler bone when used in fighting. J Exp Biol 212:3985–3993

    Article  CAS  PubMed  Google Scholar 

  17. Lincoln GA (1971) Puberty in a seasonally breeding male, the red deer stag (Cervus elaphus L.). J Reprod Fert 25:41–54

    Article  CAS  Google Scholar 

  18. Suttie JM, Lincoln GA, Kay RNB (1984) Endocrine control of antler growth in red deer stags. J Reprod Fert 71:7–15

    Article  CAS  Google Scholar 

  19. Fennessy PF, Suttie JM (1985) Antler growth: nutritional and endocrine factors. R Soc New Zeal Bull 22:239–250

    CAS  Google Scholar 

  20. Li C, Suttie JM (1994) Light microscopic studies of pedicle and early first antler development in red deer (Cervus elaphus). Anat Rec 239:198–215

    Article  CAS  PubMed  Google Scholar 

  21. Banks WJ (1974) The ossification process of the developing antler in the white-tailed deer (Odocoileus virginianus). Calcif Tissue Res 14:257–274

    Article  CAS  PubMed  Google Scholar 

  22. Kierdorf H, Kierdorf U, Szuwart T, Clemen G (1995) A light microscopic study of primary antler development in fallow deer (Dama dama). Ann Anat 177:525–532

    Article  Google Scholar 

  23. Price JS, Oyajobi BO, Nalin AM, Frazer A, Russell RGG, Sandell LJ (1996) Chondrogenesis in the regenerating antler tip in red deer: expression of coallgen types I, IIA, IIB, and X demonstrated by in situ nucleic acid hybridization and Immunocytochemistry. Dev Dyn 205:332–347

    Article  CAS  PubMed  Google Scholar 

  24. Krauss S, Wagermaier W, Estevez JA, Currey JD, Fratzl P (2011) Tubular frameworks guiding orderly bone formation in the antler of the red deer (Cervus elaphus). J Struct Biol 175:457–464

    Article  PubMed  Google Scholar 

  25. Kulin RM, Chen PY, Jiang F, Vecchio KS (2011) A study of the dynamic compressive behavior of elk antler. Mater Sci Eng C31:1030–1041

    Article  Google Scholar 

  26. Gomez S, Garcia AJ, Luna S, Kierdorf U, Kierdorf H, Gallego L, Landete-Castillejos T (2013) Labeling studies on cortical bone formation in the antlers of red deer (Cervus elaphus). Bone 52:506–515

    Article  CAS  PubMed  Google Scholar 

  27. Kierdorf U, Flohr S, Gomez S, Landete-Castillejos T, Kierdorf H (2013) The structure of pedicle and hard antler bone in the European roe deer (Capreolus capreolus): a light microscope and backscattered electron imaging study. J Anat 223:364–384

    Article  PubMed  Google Scholar 

  28. Kierdorf U, Kierdorf H, Boyde A (2000) Structure and mineralization density of antler and pedicle bone in red deer (Cervus elaphus L.) exposed to different levels of environmental fluoride: a quantitative backscattered electron imaging study. J Anat 196:71–83

    Article  PubMed Central  PubMed  Google Scholar 

  29. Bernard R (1963) Specific gravity, ash, calcium and phosphorus content of antlers of Cervidae. Natur Canadien 90:310–322

    Google Scholar 

  30. Anke M, Brückner E (1973) Der Mengen- und Spurenelementgehalt verschieden frequentierter Äsungspflanzen des Rotwildes und des Rothirschgeweihes unterschiedlicher Qualität. Beitr Jagd Wildforsch 8:21–32

    Google Scholar 

  31. Hyvärinen H, Kay RNB, Hamilton WJ (1977) Variation in the weight, specific gravity and composition of the antlers of red deer (Cervus elaphus L.). Br J Nutr 38:301–311

    Article  PubMed  Google Scholar 

  32. Miller KV, Marchinton RL, Beckwith JR, Bush PB (1985) Variations in density and chemical composition of white-tailed deer antlers. J Mamm 66:693–701

    Article  Google Scholar 

  33. Tataruch F, Wolsperger M (1995) Chemische Analysen an prähistorischen Rothirsch- und Riesenhirschgeweihen. Z Jagdwiss 41:225–228

    Google Scholar 

  34. Pathak NN, Pattanaik AK, Patra RC, Arora BM (2001) Mineral composition of antlers of three deer species reared in captivity. Small Rumin Res 42:61–65

    Article  Google Scholar 

  35. Johnson HE, Bleich VE, Krausman PR (2007) Mineral deficiencies in Tule elk, Owens Valley, California. J Wildl Dis 43:61–74

    Article  CAS  PubMed  Google Scholar 

  36. Landete-Castillejos T, Garcia A, Gallego L (2007) Body weight, early growth and antler size influence antler bone mineral composition of Iberian red deer (Cervus elaphus hispanicus). Bone 40:230–235

    Article  CAS  PubMed  Google Scholar 

  37. Gomez JA, Landete-Castillejos T, Garcia AJ, Gaspar-López E, Estevez JA, Gallego L (2008) Lactation growth influences mineral composition of first antler in Iberian red deer Cervus elaphus hispanicus. Wildl Biol 14:331–338

    Article  Google Scholar 

  38. Kierdorf U, Richards A, Sedlacek F, Kierdorf H (1997) Fluoride content and mineralization of red deer (Cervus elaphus) antlers and pedicles from fluoride polluted and uncontaminated regions. Arch Environ Contam Toxicol 32:222–227

    Article  CAS  PubMed  Google Scholar 

  39. Wagenknecht E (1988) Rotwild, 3rd edn. VEB Deutscher Landwirtschaftsverlag, Berlin

    Google Scholar 

  40. Stoffels D (1998) Analyse von Bioindikatoren im knöchernen Rosenstock und Primärgeweih mittels Röntgenfluoreszenzspektrometrie und Wasserdampfdestillation. University of Münster, Diploma thesis

    Google Scholar 

  41. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Statist 6:65–70

    Google Scholar 

  42. Currey JD (1999) The design of mineralized hard tissues for their mechanical functions. J Exp Biol 202:3285–3294

    CAS  PubMed  Google Scholar 

  43. Currey JD, Brear K, Zioupos P (2004) Notch sensitivity of mammalian mineralized tissues in impact. Proc R Soc Lond B 271:517–522

    Article  Google Scholar 

  44. Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mat Sci Eng C25:131–143

    Article  CAS  Google Scholar 

  45. Rey C, Combes C, Drouet C, Glimcher MJ (2009) Bone mineral: update on chemical composition and structure. Osteoporos Int 20:1013–1021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Farley D, Boivin G (2012) Bone mineral quality. In: Dionyssiotis Y (ed) Osteoporosis. InTech, available from http://www.intechopen.com/books/osteoporosis/bone-mineral-quality, pp 1–32

  47. Skinner HCW (2013) Mineralogy of bones: In Selinus O, Alloway B, Centeno JA, Finkelman RB, Fuge R, Lindh U, Smedley P (eds) Essentials of medical geology, revised edn. Springer, Dordrecht, pp 665–687

    Google Scholar 

  48. Robey PG (2008) Noncollagenous bone matrix proteins. In: Bilezikian JP, Raisz LG, Martin TJ (eds) Principles of bone biology, 3rd edn. Elsevier, Amsterdam, pp 335–349

    Chapter  Google Scholar 

  49. Robey PG, Boskey AL (2008) The composition of bone. In: Primer on the metabolic bone diseases and disorders of mineral metabolism, 7th edition. ASBMR, Washington, pp 32–38

  50. Suttie JM, Fennessy PF, Crosbie SF, Corson ID, Laas FJ, Elgar HJ, Lapwood KR (1991) Temporal changes in LH and testosterone and their relationship with the first antler in red deer deer (Cervus elaphus) stags from 3 to 15 months of age. J Endocrinol 131:467–474

    Article  CAS  PubMed  Google Scholar 

  51. Burr DB, Akkus O (2014) Bone morphology and organization. In: Burr DB, Allen MR (eds) Basic and applied bone biology. Elsevier Academic Press, Amsterdam, pp 3–25

    Chapter  Google Scholar 

  52. Bala Y, Farlay D, Delmas PD, Meunier PJ, Boivin G (2010) Time sequence of secondary mineralization and microhardness in cortical and cancellous bone from ewes. Bone 46:1204–1212

    Article  PubMed  Google Scholar 

  53. Akkus O, Polyakova-Akkus A, Adar F, Schaffler MB (2003) Aging of microstructural compartments in human compact bone. J Bone Min Res 18:1012–1019

    Article  CAS  Google Scholar 

  54. von Raesfeld F, Reulecke K (1988) Das Rotwild, 9th edn. Verlag Paul Parey, Hamburg

    Google Scholar 

  55. Ou-Yang H, Paschalis EP, Mayo WE, Boskey AL, Mendelsohn R (2001) Infrared microscopic imaging of bone: spatial distribution of CO3 2−. J Bone Min Res 16:893–900

    Article  CAS  Google Scholar 

  56. Rey C, Renugopalakrishnan V, Collins B, Glimcher MJ (1991) Fourier transform infrared spectroscopic study of the carbonate ions in bone mineral during aging. Calcif Tissue Int 349:251–258

    Article  Google Scholar 

  57. Burnell JM, Teubner EJ, Miller AG (1980) Normal maturational changes in bone matrix, mineral, and crystal size in the rat. Calcif Tissue Int 31:13–19

    Article  CAS  PubMed  Google Scholar 

  58. Legros R, Balmain N, Bonel G (1987) Age-related changes in mineral of rat and bovine cortical bone. Calcif Tissue Int 41:137–144

    Article  CAS  PubMed  Google Scholar 

  59. Paschalis EP, DiCarlo E, Betts F, Sherman P, Mendelsohn R, Boskey AL (1996) FTIR microspectroscopic analysis of human osteonal bone. Calcif Tissue Int 59:480–487

    Article  CAS  PubMed  Google Scholar 

  60. Petra M, Anastassopoulou J, Theologis T, Theophanides T (2005) Synchrotron micro-FT-IR spectroscopic evaluation of normal paediatric human bone. J Mol Struct 733:101–110

    Article  CAS  Google Scholar 

  61. Bonjour J-P, Guéguen L, Palacios C, Shearer MJ, Weaver CM (2009) Minerals and vitamins in bone health: the potential value of dietary enhancement. Br J Nutr 101:1581–1596

    Article  CAS  PubMed  Google Scholar 

  62. Coleman JE (1992) Structure and mechanism of alkaline phosphatase. Annu Rev Biophys Biomol Struct 21:441–483

    Article  CAS  PubMed  Google Scholar 

  63. Laurencin D, Almora-Barrios N, de Leeuw NH, Gervais C, Bonhomme C, Mauri F, Chrzanowski W, Knowles JC, Newport RJ, Wong A, Gan Z, Smith ME (2011) Magnesium incorporation into hydroxyapatite. Biomaterials 32:1826–1837

    Article  CAS  PubMed  Google Scholar 

  64. Balter V (2004) Allometric constraints on Sr/Ca and Ba/Ca partitioning in terrestrial mammalian trophic chains. Oecologia 139:83–88

    Article  PubMed  Google Scholar 

  65. Peek S, Clementz MT (2012) Ontogenetic variations in Sr/Ca and Ba/Ca ratios of dental bioapatites from Bos taurus and Odocoileus virginianus. J Trace Elem Med Biol 26:248–254

    Article  CAS  PubMed  Google Scholar 

  66. Cowan RL, Hartsook EW, Whelan JB (168) Calcium-strontium metabolism in white tailed deer related to age and antler growth. Proc Soc Exp Biol Med 129:733–737

  67. Cragle RG, Demott BJ (1959) Strontium and calcium uptake and excretion in lactating dairy cows. J Dairy Sci 42:1367–1372

    Article  CAS  Google Scholar 

  68. Clutton-Brock TH, Guinness FE, Albon SD (1982) Red deer—behavior and ecology of two sexes. University of Chicago Press, Chicago

    Google Scholar 

  69. Spadaro JA, Becker RO (1970) The distribution of trace metal ions in bone and tendon. Calc Tissue Res 6:49–54

    Article  CAS  Google Scholar 

  70. Gomez S, Rizzo R, Pozzi-Mucelli M, Bonucci E, Vittur F (1999) Zinc mapping in bone tissues by histochemistry and synchrotron radiation-induced X-ray emission: correlation with the distribution of alkaline phosphatase. Bone 25:33–38

    Article  CAS  PubMed  Google Scholar 

  71. Bigi A, Foresti E, Gandolfi M, Gazzano M, Roveri N (1995) Inhibiting effect of zinc on hydroxylapatite crystallization. J Inorg Biochem 58:49–58

    Article  CAS  Google Scholar 

  72. Olguin CA, Landete-Castillejos T, Ceacero F, Garcia AJ, Gallego L (2013) Effects of feed supplementation on mineral composition, mechanical properties and structure in femurs of Iberian red deer hinds (Cervus elaphus hispanicus). PLoS One 8(6):e65461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Palacios C (2006) The role of nutrients in bone health, from A to Z. Crit Rev Food Sci Nutr 46:621–628

    Article  CAS  PubMed  Google Scholar 

  74. Landete-Castillejos T, Currey JD, Estevez JA, Fierro Y, Calatayud A, Ceacero F, Garcia AJ, Gallego L (2010) Do drastic weather effects on diet influence changes in chemical composition, mechanical properties and structure in deer antlers? Bone 47:815–825

    Article  CAS  PubMed  Google Scholar 

  75. Gomez JA, Ceacero F, Landete-Castillejos T, Gaspar-López E, Garcia AJ, Gallego L (2012) Factors affecting antler investment in Iberian red deer. Anim Prod Sci 52:867–873

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Kierdorf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kierdorf, U., Stoffels, D. & Kierdorf, H. Element Concentrations and Element Ratios in Antler and Pedicle Bone of Yearling Red Deer (Cervus elaphus) Stags—a Quantitative X-ray Fluorescence Study. Biol Trace Elem Res 162, 124–133 (2014). https://doi.org/10.1007/s12011-014-0154-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-014-0154-x

Keywords

Navigation