Skip to main content
Log in

Correlations of Trace Element Levels in the Diet, Blood, Urine, and Feces in the Chinese Male

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

An Erratum to this article was published on 25 May 2012

Abstract

In order to explore the associations between trace elements in dietary intake and the other three biological media (blood, urine, or feces) and inter-element interactions among the latter, we simultaneously collected 72-h diet duplicates, whole blood, and 72-h urine and feces from 120 free-living healthy males in China. Correlations among the toxic (cadmium [Cd], lead [Pb]), and nutritionally essential (zinc [Zn], copper [Cu], iron [Fe], manganese [Mn], selenium [Se], iodine [I]) elements were evaluated using Spearman rank correlation analysis based on analytical data determined by inductively coupled plasma-mass spectrometry. Dietary Cd intakes were highly correlated with the fecal Cd and blood Cd levels. Inverse correlations were found for Fe–Cd and Fe–Pb in both diet versus blood and diet versus feces. Cd–Zn and Cd–Se were significantly directly correlated in the urine and feces. Cd–Se and Pb–Se were negatively correlated in blood. In addition, there existed an extremely significant association between urinary Se and urinary I. Moreover, the other two highly direct correlations were found for Se–Fe and for I–Fe in urine. Improved knowledge regarding their mutual associations is considered to be of fundamental importance to understand more the complex interrelationships in trace element metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abdulla M, Chmielnicka J (1989) New aspects on the distribution and metabolism of essential trace elements after dietary exposure to toxic metals. Biol Trace Elem Res 23:25–53

    Article  PubMed  CAS  Google Scholar 

  2. Almeida AA, Lopes CM, Silva AM, Barrado E (2008) Trace elements in human milk: correlation with blood levels, inter-element correlations and changes in concentration during the first month of lactation. J Trace Elem Med Biol 22:196–205

    Article  PubMed  CAS  Google Scholar 

  3. Alonso ML, Benedito JL, Miranda M, Castillo C, Hernandez J, Shore RF (2002) Interactions between toxic and essential trace metals in cattle from a region with low levels of pollution. Arch Environ Contam Toxicol 42:165–172

    Article  PubMed  CAS  Google Scholar 

  4. Apostoli P (2002) Elements in environmental and occupational medicine. J Chromatogr B Analyt Technol Biomed Life Sci 778:63–97

    Article  PubMed  CAS  Google Scholar 

  5. Barany E, Bergdahl IA, Bratteby LE, Lundh T, Samuelson G, Schutz A, Skerfving S, Oskarsson A (2002) Relationships between trace element concentrations in human blood and serum. Toxicol Lett 134:177–184

    Article  PubMed  CAS  Google Scholar 

  6. Beckett GJ, Arthur JR (2005) Selenium and endocrine systems. J Endocrinol 184:455–465

    Article  PubMed  CAS  Google Scholar 

  7. Blanco-Penedo I, Cruz JM, Lopez-Alonso M, Miranda M, Castillo C, Hernandez J, Benedito JL (2006) Influence of copper status on the accumulation of toxic and essential metals in cattle. Environ Int 32:901–906

    Article  PubMed  CAS  Google Scholar 

  8. Bremner I, Beattie JH (1995) Copper and zinc metabolism in health and disease: speciation and interactions. Proc Nutr Soc 54:489–499

    Article  PubMed  CAS  Google Scholar 

  9. Brzoska MM, Moniuszko-Jakoniuk J (2001) Interactions between cadmium and zinc in the organism. Food Chem Toxicol 39:967–980

    Article  PubMed  CAS  Google Scholar 

  10. Brzoska MM, Moniuszko-Jakoniuk J, Jurczuk M, Galazyn-Sidorczuk M, Rogalska J (2000) Effect of short-term ethanol administration on cadmium retention and bioelement metabolism in rats continuously exposed to cadmium. Alcohol Alcohol 35:439–445

    PubMed  CAS  Google Scholar 

  11. Chmielnicka J, Zareba G, Witasik M, Brzeznicka E (1988) Zinc–selenium interaction in the rat. Biol Trace Elem Res 15:267–276

    Article  PubMed  CAS  Google Scholar 

  12. Coppen-Jaeger DE, Wilhelm M (1989) The effects of cadmium on zinc absorption in isolated rat intestinal preparations. Biol Trace Elem Res 21:207–212

    Article  PubMed  CAS  Google Scholar 

  13. Doyle JJ, Pfander WH (1975) Interactions of cadmium with copper, iron, zinc, and manganese in ovine tissues. J Nutr 105:599–606

    PubMed  CAS  Google Scholar 

  14. Ellingsen DG, Thomassen Y, Aaseth J, Alexander J (1997) Cadmium and selenium in blood and urine related to smoking habits and previous exposure to mercury vapour. J Appl Toxicol 17:337–343

    Article  PubMed  CAS  Google Scholar 

  15. Flanagan PR, Haist J, Valberg LS (1980) Comparative effects of iron deficiency induced by bleeding and a low-iron diet on the intestinal absorptive interactions of iron, cobalt, manganese, zinc, lead and cadmium. J Nutr 110:1754–1763

    PubMed  CAS  Google Scholar 

  16. Flora SJ, Singh S, Tandon SK (1983) Role of selenium in protection against lead intoxication. Acta Pharmacol Toxicol (Copenh) 53:28–32

    Article  CAS  Google Scholar 

  17. Goldhaber SB (2003) Trace element risk assessment: essentiality vs. toxicity. Regul Toxicol Pharmacol 38:232–242

    Article  PubMed  CAS  Google Scholar 

  18. Goyer RA (1997) Toxic and essential metal interactions. Annu Rev Nutr 17:37–50

    Article  PubMed  CAS  Google Scholar 

  19. Hawkes WC, Alkan FZ, Oehler L (2003) Absorption, distribution and excretion of selenium from beef and rice in healthy North American men. J Nutr 133:3434–3442

    PubMed  CAS  Google Scholar 

  20. Heitland P, Koster HD (2006) Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS. Clin Chim Acta 365:310–318

    Article  PubMed  CAS  Google Scholar 

  21. Hunter DJ, Morris JS, Chute CG, Kushner E, Colditz GA, Stampfer MJ, Speizer FE, Willett WC (1990) Predictors of selenium concentration in human toenails. Am J Epidemiol 132:114–122

    PubMed  CAS  Google Scholar 

  22. Ikeda M, Shimbo S, Watanabe T, Ohashi F, Fukui Y, Sakuragi S, Moriguchi J (2010) Estimation of dietary Pb and Cd intake from Pb and Cd in blood or urine. Biol Trace Elem Res 139:269–286

    Article  PubMed  Google Scholar 

  23. Koh TS, Judson GJ (1986) Trace-elements in sheep grazing near a lead–zinc smelting complex at Port Pirie, South Australia. Bull Environ Contam Toxicol 37:87–95

    Article  PubMed  CAS  Google Scholar 

  24. Kohrle J, Jakob F, Contempre B, Dumont JE (2005) Selenium, the thyroid, and the endocrine system. Endocr Rev 26:944–984

    Article  PubMed  CAS  Google Scholar 

  25. Kostial K, Rabar I, Blanusa M, Simonovic I (1980) The effect of iron additive to milk on cadmium, mercury, and manganese absorption in rats. Environ Res 22:40–45

    Article  PubMed  CAS  Google Scholar 

  26. Kvicala J, Zamrazil V, Soutorova M, Tomiska F (1995) Correlations between parameters of body selenium status and peripheral thyroid parameters in the low selenium region. Analyst 120:959–965

    Article  PubMed  CAS  Google Scholar 

  27. Lee W, Myeong J, Lee LS, Kim J, Bae C, Park T (2000) An observation on the mercury contents of scalp hair in the urban residents of South Korea. Environ Toxicol Pharmacol 8:275–278

    Article  PubMed  CAS  Google Scholar 

  28. Liu X, Jin T, Nordberg GF, Sjostrom M, Zhou Y (1994) Influence of zinc and copper administration on metal disposition in rats with cadmium-metallothionein-induced nephrotoxicity. Toxicol Appl Pharmacol 126:84–90

    Article  PubMed  CAS  Google Scholar 

  29. Lopez Alonso M, Prieto Montana F, Miranda M, Castillo C, Hernandez J, Luis Benedito J (2004) Interactions between toxic (As, Cd, Hg and Pb) and nutritional essential (Ca, Co, Cr, Cu, Fe, Mn, Mo, Ni, Se, Zn) elements in the tissues of cattle from NW Spain. Biometals 17:389–397

    Article  PubMed  Google Scholar 

  30. Minoia C, Sabbioni E, Apostoli P, Pietra R, Pozzoli L, Gallorini M, Nicolaou G, Alessio L, Capodaglio E (1990) Trace element reference values in tissues from inhabitants of the European community. I. A study of 46 elements in urine, blood and serum of Italian subjects. Sci Total Environ 95:89–105

    Article  PubMed  CAS  Google Scholar 

  31. Moon CS, Paik JM, Choi CS, Kim DH, Ikeda M (2003) Lead and cadmium levels in daily foods, blood and urine in children and their mothers in Korea. Int Arch Occup Environ Health 76:282–288

    PubMed  CAS  Google Scholar 

  32. Nehru B, Iyer A (1994) Effect of selenium on lead-induced neurotoxicity in different brain regions of adult rats. J Environ Pathol Toxicol Oncol 13:265–268

    PubMed  CAS  Google Scholar 

  33. Ohmori K, Ikemi Y, Tozawa T, Koike S, Mori Y, Toda K (1985) Urinary excretion of cadmium, copper and zinc in workers exposed to cadmium. Sangyo Igaku 27:16–23

    Article  PubMed  CAS  Google Scholar 

  34. Osman K, Schutz A, Akesson B, Maciag A, Vahter M (1998) Interactions between essential and toxic elements in lead exposed children in Katowice, Poland. Clin Biochem 31:657–665

    Article  PubMed  CAS  Google Scholar 

  35. Rahil-Khazen R, Bolann BJ, Ulvik RJ (2002) Correlations of trace element levels within and between different normal autopsy tissues analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES). Biometals 15:87–98

    Article  PubMed  CAS  Google Scholar 

  36. Ritchie MR, Morton MS, Deighton N, Blake A, Cummings JH (2004) Plasma and urinary phyto-oestrogens as biomarkers of intake: validation by duplicate diet analysis. Br J Nutr 91:447–457

    Article  PubMed  CAS  Google Scholar 

  37. Rodushkin I, Odman F (2001) Application of inductively coupled plasma sector field mass spectrometry for elemental analysis of urine. J Trace Elem Med Biol 14:241–247

    Article  PubMed  CAS  Google Scholar 

  38. Schopfer J, Drasch G, Schrauzer GN (2010) Selenium and cadmium levels and ratios in prostates, livers, and kidneys of nonsmokers and smokers. Biol Trace Elem Res 134:180–187

    Article  PubMed  Google Scholar 

  39. Swanson CA, Longnecker MP, Veillon C, Howe M, Levander OA, Taylor PR, McAdam PA, Brown CC, Stampfer MJ, Willett WC (1990) Selenium intake, age, gender, and smoking in relation to indices of selenium status of adults residing in a seleniferous area. Am J Clin Nutr 52:858–862

    PubMed  CAS  Google Scholar 

  40. Szefer P, Szefer K, Pempkowiak J, Skwarzec B, Bojanowski R, Holm E (1994) Distribution and coassociations of selected metals in seals of the Antarctic. Environ Pollut 83:341–349

    Article  PubMed  CAS  Google Scholar 

  41. Szybinski Z, Walas S, Zagrodzki P, Sokolowski G, Golkowski F, Mrowiec H (2009) Iodine, selenium, and other trace elements in urine of pregnant women. Biol Trace Elem Res 138:28–41

    Article  Google Scholar 

  42. Windisch W (2002) Interaction of chemical species with biological regulation of the metabolism of essential trace elements. Anal Bioanal Chem 372:421–425

    Article  PubMed  CAS  Google Scholar 

  43. Yoneyama S, Miura K, Itai K, Yoshita K, Nakagawa H, Shimmura T, Okayama A, Sakata K, Saitoh S, Ueshima H, Elliott P, Stamler J (2008) Dietary intake and urinary excretion of selenium in the Japanese adult population: the INTERMAP Study Japan. Eur J Clin Nutr 62:1187–1193

    Article  PubMed  CAS  Google Scholar 

  44. Zimmermann MB (2006) The influence of iron status on iodine utilization and thyroid function. Annu Rev Nutr 26:367–389

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors offer their sincere thanks to Institute of Radiation Medicine, Chinese Academy of Medical Science of Tianjin for helping with recruitment and collection of samples and Laboratory of Elementomics, Center of Medical & Health Analysis, Peking University for technical support. This work was financially supported by the Natural Science Foundation of China (NSFC, No. 30972434 and 30770654) and the Ministry of Science and Technology (2009ZX09502-027-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Yu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Ou, YL., Liu, YQ. et al. Correlations of Trace Element Levels in the Diet, Blood, Urine, and Feces in the Chinese Male. Biol Trace Elem Res 145, 127–135 (2012). https://doi.org/10.1007/s12011-011-9177-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9177-8

Keywords

Navigation