Skip to main content
Log in

Apoptosis Mechanism of Human Cholangiocarcinoma Cells Induced by Bile Extract from Crocodile

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Animal bile is popularly used as a traditional medicine in China, and bile acids are their major bioactive constituents. In the present study, effects of bile extract from crocodile gallbladder on QBC939 cell growth, cell cycle, and apoptosis were investigated by MTT assay, inverted microscopy, fluorescence microscopy, transmission electron microscopy, scanning electron microscopy, PI single- and FITC/PI double-staining flow cytometry, and western blotting. Our data have revealed that bile extract inhibited cells growth significantly, and the cell cycle was arrested in G1 phase. Bile extract induced QBC939 cell apoptosis, which was associated with collapse of the mitochondrial membrane potential and increase of ROS. In bile extract-treated cells, it was observed that the expression of bcl-2 decreased and cytochrome c released to cytosol, but the expression of bax remained unchanged. The data indicated that mitochondrial pathway might play an important role in bile extract-induced apoptosis in QBC939 cells. These results provide significant insight into the anticarcinogenic action of bile extract on cholangiocarcinoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CCA:

Cholangiocarcinoma

ROS:

Reactive oxygen species

ΔΨm:

Mitochondrial transmembrane potential

PI:

Propidium iodide

FBS:

Fetal bovine serum

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

HRP:

Horseradish peroxidase

ECL:

Enhanced chemiluminescence

TEM:

Transmission electron microscopy

SEM:

Scanning electron microscope

Rh123:

Rhodamine 123

DCFH-DA:

2,7-Dichlorofluorescein diacetate

DCF:

2,7-Dichlorofluorescein

References

  1. Mahmoud, N. N., Dannenberg, A. J., Bilinski, R. T., Mestre, J. R., Chadburn, A., Churchill, M., et al. (1999). Administration of an unconjugated bile acid increases duodenal tumors in a murine model of familial adenomatous polyposis. Carcinogenesis, 20, 299–303. doi:10.1093/carcin/20.2.299.

    Article  CAS  Google Scholar 

  2. Martinez, J. D., Stratagoules, E. D., LaRue, J. M., Powell, A. A., Gause, P. R., Craven, M. T., et al. (1998). Different bile acids exhibit distinct biological effects: The tumor promoter deoxycholic acid induces apoptosis and the chemopreventive agent ursodeoxycholic acid inhibits cell proliferation. Nutrition and Cancer, 31, 111–118. doi:10.1080/01635589809514689.

    Article  CAS  Google Scholar 

  3. Tatsumura, T., Sato, H., Yamamoto, K., & Ueyama, T. (1981). Ursodeoxycholic acid prevents gastrointestinal disorders caused by anticancer drugs. The Japanese Journal of Surgery, 11, 84–89. doi:10.1007/BF02468874.

    Article  CAS  Google Scholar 

  4. Alberts, D. S., Martinez, M. E., Hess, L. M., Einspahr, J. G., Green, S. B., Bhattacharyya, A. K., et al. (2005). Phase III trial of ursodeoxycholic acid to prevent colorectal adenoma recurrence. Journal of the National Cancer Institute, 97, 846–853. doi:10.1093/jnci/dji144.

    Article  CAS  Google Scholar 

  5. Tint, G. S., Dayal, B., Batta, A. K., Shefer, S., Joanen, T., Larry, M., et al. (1980). Biliary bile acids, bile alcohols, and sterols of Alligator mississippiensis. Journal of Lipid Research, 21, 110–117.

    CAS  Google Scholar 

  6. Yeh, Y. H., Wang, D. Y., Liau, M. Y., Wu, M. L., Deng, J. F., Noguchia, T., et al. (2003). Bile acid composition in snake bile juice and toxicity of snake bile acids to rats. Comparative Biochemistry and Physiology, 136, 277–284. doi:10.1016/S1532-0458(03)00230-8.

    Google Scholar 

  7. Malhi, H., & Gores, G. J. (2006). Cholangiocarcinoma: Modern advances in understanding a deadly old disease. Journal of Hepatology, 45, 856–867. doi:10.1016/j.jhep.2006.09.001.

    Article  CAS  Google Scholar 

  8. Patel, T. (2002). Worldwide trends in mortality from biliary tract malignancies. BMC Cancer, 2, 10. doi:10.1186/1471-2407-2-10.

    Article  Google Scholar 

  9. Lazaridis, K. N., & Gores, G. J. (2005). Cholangiocarcinoma. Gastroenterology, 128, 1655–1667. doi:10.1053/j.gastro.2005.03.040.

    Article  Google Scholar 

  10. Gatto, M., Bragazzi, M. C., Semeraro, R., Napoli, C., Gentile, R., Torrice, A., et al. (2010). Cholangiocarcinoma: Update and future perspectives. Digestive and Liver Disease, 42, 253–260. doi:10.1016/j.dld.2009.12.008.

    Article  CAS  Google Scholar 

  11. Hu, Y., Yang, Y., You, Q. D., Liu, W., Gu, H. Y., Zhao, L., et al. (2006). Oroxylin A induced apoptosis of human hepatocellular carcinoma cell line HepG2 was involved in its antitumor activity. Biochemical and Biophysical Research Communications, 351, 521–527. doi:10.1016/j.bbrc.2006.10.064.

    Article  CAS  Google Scholar 

  12. Han, P., Kang, J. H., Li, H. L., Hu, S. X., Lian, H. H., Qiu, P. P., et al. (2009). Antiproliferation and apoptosis induced by tamoxifen in human bile duct carcinoma QBC939 cells via upregulated p53 expression. Biochemical and Biophysical Research Communications, 385, 251–256. doi:10.1016/j.bbrc.2009.05.059.

    Article  CAS  Google Scholar 

  13. Farnebo, M., Bykov, V. J., & Wiman, K. G. (2010). The p53 tumor suppressor: A master regulator of diverse cellular processes and therapeutic target in cancer. Biochemical and Biophysical Research Communications, 396, 85–89. doi:10.1016/j.bbrc.2010.02.152.

    Article  CAS  Google Scholar 

  14. Mork, C. N., Faller, D. V., & Spanjaard, R. A. (2005). A mechanistic approach to anticancer therapy: Targeting the cell cycle with histone deacetylase inhibitors. Current Pharmaceutical Design, 11, 1091–1104. doi:10.2174/1381612053507567.

    Article  CAS  Google Scholar 

  15. Tompson, C. B. (1995). Apoptosis in the pathogenesis and treatment of disease. Science, 267, 1456–1462. doi:10.1126/science.7878464.

    Article  Google Scholar 

  16. Green, D. R. (1998). Apoptotic pathways: The roads to run. Cell, 94, 695–698.

    Article  CAS  Google Scholar 

  17. Green, D. R., & Reed, J. C. (1998). Mitochondria and apoptosis. Science, 281, 1308–1312. doi:10.1126/science.281.5381.1309.

    Google Scholar 

  18. Zong, W. X., Li, C., Hatzivassiliou, G., Lindsten, T., Yu, Q. C., Yuan, J., et al. (2003). Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. The Journal of Cell Biology, 162, 59–69. doi:10.1083/jcb.200302084.

    Article  CAS  Google Scholar 

  19. Circu, M. L., & Aw, T. Y. (2010). Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Biology & Medicine, 48, 749–762. doi:10.1016/j.freeradbiomed.2009.12.022.

    Article  CAS  Google Scholar 

  20. Sakon, S., Xue, X., Takekawa, M., Sasazuki, T., Okazaki, T., Kojima, Y., et al. (2003). NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. The EMBO Journal, 22, 3898–3909. doi:10.1093/emboj/cdg379.

    Article  CAS  Google Scholar 

  21. Chen, Y., & Gibson, S. B. (2008). Is mitochondrial generation of reactive oxygen species a trigger for autophagy? Autophagy, 16, 246–248.

    Google Scholar 

Download references

Acknowledgments

The present investigation was supported by Grant 81072014 of the Natural Science Foundation of China, National Foundation for fostering talents of basic science (J1030626) and supported by Sriracha Tiger Zoo Co., Ltd. Sriracha Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Xi Chen.

Additional information

Jin-He Kang and Wen-Qing Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, JH., Zhang, WQ., Song, W. et al. Apoptosis Mechanism of Human Cholangiocarcinoma Cells Induced by Bile Extract from Crocodile. Appl Biochem Biotechnol 166, 942–951 (2012). https://doi.org/10.1007/s12010-011-9482-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9482-x

Keywords

Navigation