Skip to main content
Log in

The association between alterations of eye movement control and cerebral intrinsic functional connectivity in Parkinson’s disease

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Patients with Parkinson’s disease (PD) present with eye movement disturbances that accompany the cardinal motor symptoms. Previous studies have consistently found evidence that large-scale functional networks are critically involved in eye movement control. We challenged the hypothesis that altered eye movement control in patients with PD is closely related to alterations of whole-brain functional connectivity in association with the neurodegenerative process. Saccadic and pursuit eye movements by video-oculography and ‘resting-state’ functional MRI (3 Tesla) were recorded from 53 subjects, i.e. 31 patients with PD and 22 matched healthy controls. Video-oculographically, a broad spectrum of eye movement impairments was demonstrated in PD patients vs. controls, including interrupted smooth pursuit, hypometric saccades, and a high distractibility in anti-saccades. Significant correlations between altered oculomotor parameters and functional connectivity measures were observed, i.e. the worse the oculomotor performance was, the more the regional functional connectivity in cortical, limbic, thalamic, cerebellar, and brainstem areas was decreased. Remarkably, decreased connectivity between major nodes of the default mode network was tightly correlated with the prevalence of saccadic intrusions as a measure for distractability. In conclusion, dysfunctional eye movement control in PD seems to be primarily associated with (cortical) executive deficits, rather than being related to the ponto-cerebellar circuits or the oculomotor brainstem nuclei. Worsened eye movement performance together with the potential pathophysiological substrate of decreased intrinsic functional connectivity in predominantly oculomotor-associated cerebral functional networks may constitute a behavioral marker in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson, T. J., & MacAskill, M. R. (2013). Eye movements in patients with neurodegenerative disorders. Nature Reviews Neurology, 9(2), 74–85.

    Article  PubMed  Google Scholar 

  • Baggio, H.-C., Sala-Llonch, R., Segura, B., Marti, M.-J., Valldeoriola, F., Compta, Y., et al. (2014). Functional brain networks and cognitive deficits in Parkinson’s disease. Human Brain Mapping, 35(9), 4620–4634.

    Article  PubMed  Google Scholar 

  • Balzer-Geldsetzer, M., da Costa, A. S. F. B., Kronenbürger, M., Schulz, J. B., Röske, S., Spottke, A., et al. (2011). Parkinson’s disease and dementia: a longitudinal study (DEMPARK). Neuroepidemiology, 37(3–4), 168–176.

    Article  PubMed  Google Scholar 

  • Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537–541.

    Article  CAS  PubMed  Google Scholar 

  • Bosch, S. E., Neggers, S. F. W., & Van der Stigchel, S. (2013). The role of the frontal eye fields in oculomotor competition: image-guided TMS enhances contralateral target selection. Cerebral Cortex, 23(4), 824–32.

  • Braak, H., & Del Tredici, K. (2009). Neuroanatomy and pathology of sporadic Parkinson’s disease. Advances in Anatomy Embryology and Cell Biology, 201, 1–119.

    Google Scholar 

  • Braak, H., Del Tredici, K., Rüb, U., de Vos, R. A. I., Jansen Steur, E. N. H., & Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging, 24(2), 197–211.

    Article  PubMed  Google Scholar 

  • Brett, M., Johnsrude, I. S., & Owen, A. M. (2002). The problem of functional localization in the human brain. Nature Reviews Neuroscience, 3(3), 243–249.

    Article  CAS  PubMed  Google Scholar 

  • Chandler, M. J., Lacritz, L. H., Hynan, L. S., Barnard, H. D., Allen, G., Deschner, M., et al. (2005). A total score for the CERAD neuropsychological battery. Neurology, 65(1), 102–106.

    Article  CAS  PubMed  Google Scholar 

  • Fahn, S., & Elton, R. (1987). Unified Parkinson’s disease rating scale. In S. Fahn, C. D. Marsden, D. B. Calne, & M. Goldstein (Eds.), Recent developments in Parkinson’s disease ,Vol 2., pp. 153–163, 293–304.

  • Fazekas, F., Chawluk, J. B., Alavi, A., Hurtig, H. I., & Zimmerman, R. A. (1987). MR signal abnormalities at 1.5T in Alzheimer’s dementia and normal aging. American Journal of Roentgenology, 149(2), 351–356.

  • Filippi, M., van den Heuvel, M. P., Fornito, A., He, Y., Hulshoff Pol, H. E., Agosta, F., et al. (2013). Assessment of system dysfunction in the brain through MRI-based connectomics. Lancet Neurology, 12(12), 1189–1199.

    Article  PubMed  Google Scholar 

  • Fillenbaum, G. G., van Belle, G., Morris, J. C., Mohs, R. C., Mirra, S. S., Davis, P. C., et al. (2008). Consortium to Establish a Registry for Alzheimer’s Disease (CERAD): the first twenty years. Alzheimer’s & Dementia, 4(2), 96–109.

    Article  Google Scholar 

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.

    Article  CAS  PubMed  Google Scholar 

  • Friman, O., Borga, M., Lundberg, P., & Knutsson, H. (2004). Detection and detrending in fMRI data analysis. NeuroImage, 22(2), 645–655.

    Article  PubMed  Google Scholar 

  • Fukushima, K., Fukushima, J., Warabi, T., & Barnes, G. R. (2013). Cognitive processes involved in smooth pursuit eye movements: behavioral evidence, neural substrate and clinical correlation. Frontiers in Systems Neuroscience, 7, 4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaymard, B., Rivaud, S., Cassarini, J. F., Dubard, T., Rancurel, G., Agid, Y., & Pierrot-Deseilligny, C. (1998). Effects of anterior cingulate cortex lesions on ocular saccades in humans. Experimental Brain Research, 120(2), 173–183.

    Article  CAS  PubMed  Google Scholar 

  • Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage, 15(4), 870–878.

    Article  PubMed  Google Scholar 

  • Gilbert, C. D. (2013). The constructive nature of visual processing. In A. J. H. James, H. Schwartz, T. M. Jessell, S. A. Siegelbaum, & E. R. Kandel (Eds.), Principles of Neural Science (5th ed., pp. 556–576). New York: McGraw-Hill, USA.

    Google Scholar 

  • Goldberg, M. E., & Walker, M. F. (2013). The control of gaze. In A. J. H. James, H. Schwartz, T. M. Jessell, S. A. Siegelbaum, & E. R. Kandel (Eds.), Principles of Neural Science (5th ed., pp. 894–916). New York: McGraw-Hill, USA.

    Google Scholar 

  • Gorges, M., Müller, H.-P., Lulé, D., Ludolph, A. C., Pinkhardt, E. H., & Kassubek, J. (2013). Functional connectivity within the default mode network is associated with saccadic accuracy in Parkinson’s disease: a resting-state FMRI and videooculographic study. Brain Connectivity, 3(3), 265–272.

    Article  PubMed  Google Scholar 

  • Gorges, M., Müller, H.-P., Ludolph, A. C., Rasche, V., & Kassubek, J. (2014). Intrinsic functional connectivity networks in healthy elderly subjects: a multiparametric approach with structural connectivity analysis. BioMed Research International, 2014, Article ID 947252.

  • Gorges, M., Pinkhardt, E. H., & Kassubek, J. (2014). Alterations of eye movement control in neurodegenerative movement disorders. Journal of Ophthalmology, 2014, Article ID 658243.

  • Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helmchen, C., Pohlmann, J., Trillenberg, P., Lencer, R., Graf, J., & Sprenger, A. (2012). Role of anticipation and prediction in smooth pursuit eye movement control in Parkinson’s disease. Movement Disorders, 27(8), 1012–1018.

  • Hikosaka, O., Takikawa, Y., & Kawagoe, R. (2000). Role of the basal ganglia in the control of purposive saccadic eye movements. Physiological Reviews, 80(3), 953–978.

    CAS  PubMed  Google Scholar 

  • Hyde, J. S., & Li, R. (2014). Functional connectivity in rat brain at 200 μm resolution. Brain Connectivity, 4(7), 470–480.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jamadar, S. D., Fielding, J., & Egan, G. F. (2013). Quantitative meta-analysis of fMRI and PET studies reveals consistent activation in fronto-striatal-parietal regions and cerebellum during antisaccades and prosaccades. Frontiers in Psychology, 4, 749.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jucker, M., & Walker, L. C. (2013). Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature, 501(7465), 45–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kassubek, J., & Pinkhardt, E. H. (2011). Neuro-ophthalmological alterations in patients with movement disorders. In N. Gálvez-Jiménez & P. Tuite (Eds.), Uncommon causes of movement disorders (1st ed., pp. 306–315). Cambridge University Press.

  • Krauzlis, R. J. (2004). Recasting the smooth pursuit eye movement system. Journal of Neurophysiology, 91(2), 591–603.

    Article  PubMed  Google Scholar 

  • Laird, A. R., Fox, P. M., Eickhoff, S. B., Turner, J. A., Ray, K. L., McKay, D. R., et al. (2011). Behavioral interpretations of intrinsic connectivity networks. Journal of Cognitive Neuroscience, 23(12), 4022–4037.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leigh, R. J., & Zee, D. S. (2006). The Neurology of Eye Movements. Oxford University Press, USA.

  • Lemos, J., & Eggenberger, E. (2013). Saccadic intrusions: review and update. Current Opinion in Neurology, 26(1), 59–66.

    Article  CAS  PubMed  Google Scholar 

  • Litvan, I., Goldman, J. G., Tröster, A. I., Schmand, B. A., Weintraub, D., Petersen, R. C., et al. (2012). Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: movement disorder society task force guidelines. Movement Disorders : Official Journal of the Movement Disorder Society, 27(3), 349–356.

    Article  Google Scholar 

  • Luo, C., Song, W., Chen, Q., Zheng, Z., Chen, K., Cao, B., et al. (2014). Reduced functional connectivity in early-stage drug-naive Parkinson’s disease: a resting-state fMRI study. Neurobiology of Aging, 35(2), 431–441.

    Article  PubMed  Google Scholar 

  • Martinez-Conde, S., Otero-Millan, J., & Macknik, S. L. (2013). The impact of microsaccades on vision: towards a unified theory of saccadic function. Nature Reviews Neuroscience, 14(2), 83–96.

    Article  CAS  PubMed  Google Scholar 

  • Mosimann, U. P., Müri, R. M., Burn, D. J., Felblinger, J., O’Brien, J. T., & McKeith, I. G. (2005). Saccadic eye movement changes in Parkinson’s disease dementia and dementia with lewy bodies. Brain, 128(Pt 6), 1267–1276.

  • Müller, H.-P., & Kassubek, J. (2013). Diffusion tensor magnetic resonance imaging in the analysis of neurodegenerative diseases. Journal of Visualized Experiments: JoVE, (77). doi:10.3791/50427

  • Müller, H.-P., Unrath, A., Ludolph, A. C., & Kassubek, J. (2007). Preservation of diffusion tensor properties during spatial normalization by use of tensor imaging and fibre tracking on a normal brain database. Physics in Medicine and Biology, 52(6), N99–N109.

    Article  PubMed  Google Scholar 

  • Munoz, D. P., & Everling, S. (2004). Look away: the anti-saccade task and the voluntary control of eye movement. Nature Reviews Neuroscience, 5(3), 218–228.

    Article  CAS  PubMed  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.

    Article  CAS  PubMed  Google Scholar 

  • Olson, C. R., Musil, S. Y., & Goldberg, M. E. (1996). Single neurons in posterior cingulate cortex of behaving macaque: eye movement signals. Journal of Neurophysiology, 76(5), 3285–3300.

    CAS  PubMed  Google Scholar 

  • Otero-Millan, J., Schneider, R., Leigh, R. J., Macknik, S. L., & Martinez-Conde, S. (2013). Saccades during attempted fixation in parkinsonian disorders and recessive ataxia: from microsaccades to square-wave jerks. PLoS One, 8(3), e58535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierrot-Deseilligny, C., Milea, D., & Müri, R. M. (2004). Eye movement control by the cerebral cortex. Current Opinion in Neurology, 17(1), 17–25.

    Article  PubMed  Google Scholar 

  • Pinkhardt, E. H., & Kassubek, J. (2011). Ocular motor abnormalities in Parkinsonian syndromes. Parkinsonism & Related Disorders, 17(4), 223–230.

    Article  Google Scholar 

  • Pinkhardt, E. H., Jürgens, R., Becker, W., Valdarno, F., Ludolph, A. C., & Kassubek, J. (2008). Differential diagnostic value of eye movement recording in PSP-parkinsonism, Richardson’s syndrome, and idiopathic Parkinson’s disease. Journal of Neurology, 255(12), 1916–1925.

    Article  PubMed  Google Scholar 

  • Pinkhardt, E. H., Kassubek, J., Süssmuth, S., Ludolph, A. C., Becker, W., & Jürgens, R. (2009). Comparison of smooth pursuit eye movement deficits in multiple system atrophy and Parkinson’s disease. Journal of Neurology, 256(9), 1438–1446.

    Article  PubMed  Google Scholar 

  • Pinkhardt, E. H., Jürgens, R., Lulé, D., Heimrath, J., Ludolph, A. C., Becker, W., & Kassubek, J. (2012). Eye movement impairments in Parkinson’s disease: possible role of extradopaminergic mechanisms. BMC Neurology, 12, 5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinkhardt, E. H., Issa, H., Gorges, M., Jürgens, R., Lulé, D., Heimrath, J., et al. (2014). Do eye movement impairments in patients with small vessel cerebrovascular disease depend on lesion load or on cognitive deficits? A video-oculographic and MRI study. Journal of Neurology, 261(4), 791–803.

    Article  PubMed  Google Scholar 

  • Prodoehl, J., Burciu, R. G., & Vaillancourt, D. E. (2014). Resting state functional magnetic resonance imaging in Parkinson’s disease. Current Neurology and Neuroscience Reports, 14(6), 448.

    Article  PubMed  Google Scholar 

  • Ptak, R., & Müri, R. M. (2013). The parietal cortex and saccade planning: lessons from human lesion studies. Frontiers in Human Neuroscience, 7, 254.

    Article  PubMed  PubMed Central  Google Scholar 

  • Purcell, B. A., Weigand, P. K., & Schall, J. D. (2012). Supplementary eye field during visual search: salience, cognitive control, and performance monitoring. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 32(30), 10273–10285.

    Article  CAS  Google Scholar 

  • Raichle, M. E., & Snyder, A. Z. (2007). A default mode of brain function: a brief history of an evolving idea. NeuroImage, 37(4), 1083–1099.

  • Rolfs, M., Jonikaitis, D., Deubel, H., & Cavanagh, P. (2011). Predictive remapping of attention across eye movements. Nature Neuroscience, 14(2), 252–256.

    Article  CAS  PubMed  Google Scholar 

  • Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., et al. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 13040–13045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder, A. Z., & Raichle, M. E. (2012). A brief history of the resting state: the Washington University perspective. NeuroImage, 62(2), 902–910.

    Article  PubMed  PubMed Central  Google Scholar 

  • Song, X.-W., Dong, Z.-Y., Long, X.-Y., Li, S.-F., Zuo, X.-N., Zhu, C.-Z., et al. (2011). REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One, 6(9), e25031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparks, D. L. (2002). The brainstem control of saccadic eye movements. Nature Reviews Neuroscience, 3(12), 952–964.

    Article  CAS  PubMed  Google Scholar 

  • Terao, Y., Fukuda, H., Yugeta, A., Hikosaka, O., Nomura, Y., Segawa, M., et al. (2011). Initiation and inhibitory control of saccades with the progression of Parkinson’s disease - changes in three major drives converging on the superior colliculus. Neuropsychologia, 49(7), 1794–1806.

    Article  PubMed  Google Scholar 

  • Tomlinson, C. L., Stowe, R., Patel, S., Rick, C., Gray, R., & Clarke, C. E. (2010). Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Movement Disorders, 25(15), 2649–2653.

  • Tractenberg, R. E., Fillenbaum, G., Aisen, P. S., Liebke, D. E., Yumoto, F., & Kuchibhatla, M. N. (2010). What the CERAD Battery Can Tell Us about Executive Function as a Higher-Order Cognitive Faculty. Current gerontology and geriatrics research, 510614.

  • Unrath, A., Müller, H.-P., Riecker, A., Ludolph, A. C., Sperfeld, A.-D., & Kassubek, J. (2010). Whole brain-based analysis of regional white matter tract alterations in rare motor neuron diseases by diffusion tensor imaging. Human Brain Mapping, 31(11), 1727–1740.

    PubMed  Google Scholar 

  • Van Dijk, K. R. A., Hedden, T., Venkataraman, A., Evans, K. C., Lazar, S. W., & Buckner, R. L. (2010). Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. Journal of Neurophysiology, 103(1), 297–321.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yerram, S., Glazman, S., & Bodis-Wollner, I. (2013). Cortical control of saccades in Parkinson disease and essential tremor. Journal of Neural Transmission, 120(1), 145–156.

  • Zirnsak, M., Steinmetz, N. A., Noudoost, B., Xu, K. Z., & Moore, T. (2014). Visual space is compressed in prefrontal cortex before eye movements. Nature, 507(7493), 504–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Data were generated within the LANDSCAPE study (Representatives: Prof. Dr. R. Dodel, Prof. Dr. D. Berg, Prof. Dr. R. Hilker-Roggendorf, Prof. Dr. E. Kalbe, Prof. Dr. J. Kassubek, Prof. Dr. B. Mollenhauer, Prof. Dr. J. Schulz, Dr. A. Spottke, Prof. Dr. A. Storch, Prof. Dr. H.-U. Wittchen). The LANDSCAPE study is part of the Competence Network Degenerative Dementias (KNDD) which was funded by the German Federal Ministry of Education and Research (project number 01GI1008C). The authors thank Prof. Dr. W. Becker and Dr. R. Jürgens for their helpful support in video-oculographic data analysis. We also thank S. Fuchs for the MRI data acquisition, R. Kühne for his technical support in the oculomotor measurements as well as D. Hueske and S. Schüle for their administration assistance.

Disclosures

Martin Gorges, Hans-Peter Müller, Dorothée Lulé, Elmar H. Pinkhardt, Albert C. Ludolph, and Jan Kassubek declare no conflicts of interest. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study. Additional informed consent was obtained from all patients for which identifying information is included in this article.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Jan Kassubek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorges, M., Müller, HP., Lulé, D. et al. The association between alterations of eye movement control and cerebral intrinsic functional connectivity in Parkinson’s disease. Brain Imaging and Behavior 10, 79–91 (2016). https://doi.org/10.1007/s11682-015-9367-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-015-9367-7

Keywords

Navigation