Skip to main content

Advertisement

Log in

The proliferation of mouse mammary epithelial cells in response to specific mitogens is modulated by the mammary fat pad in vitro

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The ability of the murine mammary fat pad to directly stimulate the growth of mammary epithelial cells and to modulate the effects of various mammogenic agents has been investigated in a newly described, hormone- and serum-free coculture system. COMMA-1D mouse mammary epithelial cells were cultured for 5 or 7 d with various supplements in the absence or presence of epithelium-free mammary fat pad explants from virgin female BALB/c mice. Cocultured fat pad stimulated increases in the DNA content of COMMA-1D cultures by two- to threefold or six-to eightfold after 5 or 7 d, respectively. The mitogenic effect was additive to that of 10% fetal calf serum and could not be attributed to the release of prostaglandin E2 or synthesis of prostaglandins by epithelial cells. In addition, bovine serum albumin attenuated (P<0.05) the mitogenic effect of cocultured mammary fat pad. Added alone, insulinlike growth factor-I, epidermal growth factor, and insulin increased (P<0.05) total DNA of COMMA-1D cultures by 2.5-, 3.7-, and 2.3-fold, respectively. Cocultured mammary fat pad markedly interacted (P<0.01) with these mitogens to yield final DNA values that were 21.2-, 13.3-, and 22.1-fold greater than in basal medium only. Associated with this proliferation was the formation of numerous domes above the COMMA-1D monolayer. There was no proliferative response to growth hormone or prolactin in the absence or presence of cocultured fat pad (P>0.05). Whereas hydrocortisone did not alter cell number, it attenuated (P<0.05) the mitogenic effect of cocultured mammary fat pad. These results indicate that the murine mammary fat pad is not only a direct source of mitogenic activity, but also modulates the response of mammary epithelial cells to certain mammogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bandyopadhyay, G. K.; Hwang, S.-I.; Imagawa, W., et al. Role of polyunsaturated fatty acids as signal transducers: amplification of signals from growth factor receptors by fatty acids in mammary epithelial cells. Prostaglandins Leukotrienes Essent. Fatty Acids 48:71–78; 1993.

    Article  CAS  Google Scholar 

  • Bandyopadhyay, G. K.; Imagawa, W.; Wallace, D. R., et al. Linoleate metabolites enhance the in vitro proliferative response of mouse mammary epithelial cells to epidermal growth factor. J. Biol. Chem. 262:2750–2756; 1987.

    PubMed  CAS  Google Scholar 

  • Bandyopadhyay, G. K.; Imagawa, W.; Wallace, D. R., et al. Proliferative effects of insulin and epidermal growth factor on mouse mammary epithelial cells in primary culture. Enhancement by hydroxyeicosatetraenoic acids and synergism with prostaglandin E2. J. Biol. Chem. 263:7567–7573; 1988.

    PubMed  CAS  Google Scholar 

  • Beck, J. C.; Hosick, H. L. Growth of mouse mammary epithelium in response to serum-free media conditioned by mammary adipose tissue. Cell Biol. Int. Rep. 12:85–97; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Beck, J. C.; Hosick, H. L.; Watkins, B. A. Growth of epithelium from a preneoplastic mammary outgrowth in response to mammary adipose tissue. In Vitro Cell. Dev. Biol. 25:409–418; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Carrington, C. A.; Hosick, H. L. Effects of dietary fat on the growth of normal, preneoplastic and neoplastic mammary epithelial cells in vivo and in vitro. J. Cell Sci. 75:269–278; 1985.

    PubMed  CAS  Google Scholar 

  • Chakravorti, S.; Sheffield, L. G. Acidic and basic fibroblast growth factor mRNA and protein in mouse mammary glands. Endocrine 4:175–182; 1996.

    CAS  Google Scholar 

  • Coleman, S.; Silberstein, G. B.; Daniel, C. W. Ductal morphogenesis in the mouse mammary gland: evidence supporting a role for epidermal growth factor. Dev. Biol. 127:304–315; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Danielson, K. G.; Oborn, C. J.; Durban, E. M., et al. Epithelial mouse mammary cell line exhibiting normal morphogenesis in vivo and functional differentiation in vitro. Proc. Natl. Acad. Sci. USA 81:3756–3760; 1984.

    Article  PubMed  CAS  Google Scholar 

  • DeOme, K. B.; Faulkin, L. J., Jr.; Bern, H. A., et al. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res. 19:515–520; 1959.

    PubMed  CAS  Google Scholar 

  • Dickson, R. B.; Lippman, M. E. Growth factors in breast cancer. Endocr. Rev. 16:559–589; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Eisenstein, R. S.; Rosen, J. M. Both cell substratum regulation and hormonal regulation of milk protein gene expression are exerted primarily at the posttranscriptional level. Mol. Cell. Biol. 8:3183–3190; 1988.

    PubMed  CAS  Google Scholar 

  • Eling, T. E.; Glasgow, W. C. Cellular proliferation and lipid metabolism: importance of lipoxygenases in modulating epidermal growth factor-dependent mitogenesis. Cancer Metastasis Rev. 13:397–410; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Enami, J.; Enami, S.; Kawamura, K., et al. Growth of normal and neoplastic mammary epithelial cells of the mouse by mammary fibroblast-conditioned medium factor. In: Enami, J.; Ham, R. G., eds. Growth and differentiation of mammary epithelial cells in culture. Tokyo: Japan Scientific Societies Press; 1987:125–153.

    Google Scholar 

  • Finch, P. W.; Cunha, G. R.; Rubin, J. S., et al. Pattern of keratinocyte growth factor and keratinocyte growth factor receptor expression during mouse fetal development suggests a role in mediating morphogenetic mesenchymal-epithelial interactions. Dev. Dyn. 203:223–240; 1995.

    PubMed  CAS  Google Scholar 

  • Haslam, S. Z. Mammary fibroblast influence on normal mouse mammary epithelial cells responses to estrogen in vitro. Cancer Res. 46:310–316; 1986.

    PubMed  CAS  Google Scholar 

  • Hoshino, K. Mammary transplantation and its histogenesis in mice. In: Yokoyama, A.; Mizuno, H.; Nagasawa, H., eds. Physiology of mammary glands. Tokyo: Japan Scientific Societies Press; 1978:163–228.

    Google Scholar 

  • Imagawa, W.; Cunha, G. R.; Young, P., et al. Keratinocyte growth factor and acidic fibroblast growth factor are mitogens for primary cultures of mammary epithelium. Biochem. Biophys. Res. Commun. 204:1165–1169; 1994a.

    Article  PubMed  CAS  Google Scholar 

  • Imagawa, W.; Spencer, E. M.; Larson, L., et al. Somatomedin-C substitutes for insulin for the growth of mammary epithelial cells from normal virgin mice in serum-free collagen gel cell culture. Endocrinology 119:2695–2699; 1986a.

    PubMed  CAS  Google Scholar 

  • Imagawa, W.; Tomooka, Y.; Nandi, S. Serum-free growth of normal and tumor mouse mammary epithelial cells in primary culture. Proc. Natl. Acad. Sci. USA 79:4074–4077; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Imagawa, W.; Yang, J.; Guzman, R., et al. Control of mammary gland development. In: Knobil, E.; Neill, J. D., eds. The physiology of reproduction. 2nd ed. New York: Raven Press; 1994b:1033–1063.

    Google Scholar 

  • Ip, M. M.; Darcy, K. M. Three-dimensional mammary primary culture model systems. J. Mammary Gland Biol. Neoplasia 1:91–110; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Keely, P. J.; Wu, J. E.; Santoro, S. A. The spatial and temporal expression of the α2β1 integrin and its ligands, collagen I, collagen IV, and laminin, suggest important roles in mouse mammary morphogenesis. Differentiation 59:1–13; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Kidwell, W. R.; Monaco, M. E.; Wicha, M. S., et al. Unsaturated fatty acid requirements for growth and survival of a rat mammary tumor cell line. Cancer Res. 38:4091–4100; 1978.

    PubMed  CAS  Google Scholar 

  • Labarca, C.; Paigen, K. A simple, rapid, and sensitive DNA assay procedure. Anal. Biochem. 102:344–352; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Levay-Young, B. K.; Bandyopadhyay, G. K.; Nandi, S. Linoleic acid, but not cortisol, stimulates accumulation of casein by mouse mammary epithelial cells in serum-free collagen gel culture. Proc. Natl. Acad. Sci. USA 84:8448–8452; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Levine, J. F.; Stockdale, F. E. 3T3-L1 adipocytes promote the growth of mammary epithelium. Exp. Cell Res. 151:112–122; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Nilausen, K. Role of fatty acids in growth-promoting effect of serum albumin on hamster cells in vitro. J. Cell. Physiol. 96:1–14; 1978.

    Article  PubMed  CAS  Google Scholar 

  • Nolan, R. D.; Danilowicz, R. M.; Eling, T. E. Role of arachidonic acid metabolism in the mitogenic response of BALB/c 3T3 fibroblasts to epidermal growth factor. Mol. Pharmacol. 33:650–656; 1988.

    PubMed  CAS  Google Scholar 

  • Pessin, J. E. Transmembrane signaling properties of the insulin and IGF-I tyrosine kinase receptors. In: Baxter, R. C.; Gluckman, P. D.; Rosenfeld, R. G., eds. The insulin-like growth factors and their regulatory proteins. Amsterdam, Netherlands: Elsevier Science Publishers; 1994:87–94.

    Google Scholar 

  • Plaut, K.; Ikeda, M.; Vonderhaar, B. K. Role of growth hormone and insulin-like growth factor-I in mammary development. Endocrinology 133:1843–1848; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Rahimi, N.; Saulnier, R.; Nakamura, T., et al. Role of hepatocyte growth factor in breast cancer: a novel mitogenic factor secreted by adipocytes. DNA Cell Biol. 13:1189–1197; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Riss, T. L.; Sirbasku, D. A. Growth and continuous passage of COMMA-D mouse mammary epithelial cells in hormonally-defined serum-free medium. Cancer Res. 47:3776–3782; 1987.

    PubMed  CAS  Google Scholar 

  • Ruan, W.; Catanese, V.; Wieczorek, R., et al. Estradiol enhances the stimulatory effect of insulin-like growth factor-I (IGF-I) on mammary development and growth hormone-induced IGF-I messenger ribonucleic acid. Endocrinology 136:1296–1302; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Rudland, P. S.; Twiston Davies, A. C.; Tsao, S.-W. Rat mammary preadipocytes in culture produce a trophic agent for mammary epithelia-prostaglandin E2. J. Cell. Physiol. 120:364–376; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Salomon, D. S.; Liotta, L. A.; Kidwell, W. R. Differential response to growth factor by rat mammary epithelium plated on different collagen substrata in serum-free medium. Proc. Natl. Acad. Sci. USA 78:382–386; 1981.

    Article  PubMed  CAS  Google Scholar 

  • SAS system, version 6.1 The SAS Institute Inc., Cary, NC; 1994.

  • Sasaki, M.; Nishio, M.; Sasaki, T., et al. Identification of mouse mammary fibroblast-derived mammary growth factor as hepatocyte growth factor. Biochem. Biophys. Res. Commun. 199:772–779; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Shyamala, G.; Ferenczy, A. Mammary fat pad may be a potential site for initiation of estrogen action in normal mouse mammary glands. Endocrinology 115:1078–1081; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Singer, C.; Rasmussen, A.; Smith, H. S., et al. Malignant breast epithelium selects for insulin-like growth factor II expression in breast stroma: evidence for paracrine function. Cancer Res. 55:2448–2454; 1995.

    PubMed  CAS  Google Scholar 

  • Snedeker, S. M.; Brown, C. F.; DiAugustine, R. P. Expression and functional properties of transforming growth factor α and epidermal growth factor during mouse mammary gland ductal morphogenesis. Proc. Natl. Acad. Sci. USA 88:276–280; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Spector, A. A. Structure and lipid binding properties of serum albumin. Methods Enzymol. 128:320–339; 1986.

    PubMed  CAS  Google Scholar 

  • Sylvester, P. W.; Birkenfeld, H. P.; Hosick, H. L., et al. Fatty acid modulation of epidermal growth factor-induced mouse mammary epithelial cell proliferation in vitro. Exp. Cell Res. 214:145–153; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Topper, Y. J.; Freeman, C. S. Multiple hormone interactions in the developmental biology of the mammary gland. Physiol. Rev. 60:1049–1106; 1980.

    PubMed  CAS  Google Scholar 

  • Topper, Y. J.; Oka, T.; Vonderhaar, B. K. Techniques for studying development of normal mammary epithelial cells in organ culture. Methods Enzymol. 39:443–454; 1975.

    Article  PubMed  CAS  Google Scholar 

  • Ulich, T. R.; Yi, E. S.; Cardiff, R., et al. Keratinocyte growth factor is a growth factor for mammary epithelium in vivo: the mammary epithelium of lactating rats is resistant to the proliferative action of keratinocyte growth factor. Am. J. Pathol. 144:862–868; 1994.

    PubMed  CAS  Google Scholar 

  • Wang, S.; Haslam, S. Z. Serum-free primary culture of normal mouse mammary epithelial and stromal cells. In Vitro Cell. Dev. Biol. 30A:859–866; 1994.

    Article  CAS  Google Scholar 

  • Weber-Hall, S. J.; Phippard, D. J.; Niemeyer, C. C., et al. Developmental and hormonal regulation of Wnt gene expression in the mouse mammary gland. Differentiation 57:205–214; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Wicha, M. S.; Liotta, L. A.; Kidwell, W. R. Effects of free fatty acids on the growth of normal and neoplastic rat mammary epithelial cells. Cancer Res. 39:426–435; 1979.

    PubMed  CAS  Google Scholar 

  • Wilson, S. E.; Weng, J.; Chwang, E. L., et al. Hepatocyte growth factor (HGF), keratinocyte growth factor (KGF), and their receptors in human breast cells and tissues: alternative receptors. Cell & Mol. Biol. Res. 40:337–350; 1994.

    CAS  Google Scholar 

  • Yang, J.; Richards, J.; Guzman, R., et al. Sustained growth in primary culture of normal mammary epithelial cells embedded in collagen gels. Proc. Natl. Acad. Sci. USA 77:2088–2092; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Zor, U.; Her, E.; Harell, T., et al. Arachidonic acid release by basophilic leukemia cells and macrophages stimulated by Ca2+ ionophores, antigen and diacylglycerol: essential role for protein kinase C and prevention by glucocorticosteroids. Biochim. Biophys. Acta 1091:385–392; 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hovey, R.C., MacKenzie, D.D.S. & McFadden, T.B. The proliferation of mouse mammary epithelial cells in response to specific mitogens is modulated by the mammary fat pad in vitro . In Vitro Cell.Dev.Biol.-Animal 34, 385–392 (1998). https://doi.org/10.1007/s11626-998-0020-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-998-0020-2

Key words

Navigation