Skip to main content
Log in

Abstract

Humic acids are known for their overall positive health and productivity effects in animal feeding trials and, controversially, as an aetiological factor of cancer. We tried to assess the in vitro effect of humic acids from a selected source in Slovakia when used at recommended prophylactic dosage. We investigated antioxidant properties, enzymatic and non-enzymatic antioxidant defence system in liver mitochondria and cultured cancer cell lines in vitro. We observed a significant decrease in superoxide dismutase activity after humic acids treatment irrespective of dissolving in dimethyl sulphoxide or direct addition to mitochondria suspension in a respiration medium. Activities of other antioxidant enzymes measured, such as glutathione peroxidase and glutathione reductase, showed no significant differences from the control as well as the reduced glutathione content. Percentage of inhibition by humic acids of superoxide radical indicated lower efficacy compared with that of hydroxyl radical. Survival of six different cancer cells lines indicated that only the acute T lymphoblastic leukaemia cell line was sensitive to the tested humic acids. Despite relatively low solubility in aqueous solutions, humic acids from the selected source participated in redox regulation. By recapturing the radicals, humic acids reloaded the antioxidant defensive mechanism. Results from in vitro study conducted with humic acids from the natural source showed potential of these substances as promising immunity enhancing agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

References

  • Aon M. A.; Cortassa S.; Maack Ch; O’Rourke B. Sequential opening of mitochondrial ion channels as a function of glutathione redox thiol status. J. Biol. Chem. 282(30): 21889–21900; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Asahi M.; Fujii J.; Suzuki K.; Seo H. G.; Kuzuya T.; Hori M.; Tada M.; Fujii S.; Taniguchi N. Inactivation of glutathione peroxidase by nitric oxide. J. Biol. Chem. 270(36): 21035–21039; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp C.; Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44: 276–287; 1971.

    Article  PubMed  CAS  Google Scholar 

  • Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Carlberg I.; Mannervik B. Glutathione reductase. Methods Enzymol. 113: 484–485; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Chen Y.; Katan J.; Gamliel A.; Aviad T.; Schnitzer M. Involvement of soluble organic matter in increased plant growth in solarized soils. Biol. Fertil. Soils 32: 28–34; 2000.

    Article  CAS  Google Scholar 

  • Cheng M. L.; Ho H. Y.; Huang Y. W.; Lu F. J.; Chiu D. T. Y. Humic acid induces oxidative DNA damage, growth retardation, and apoptosis in human primary fibroblasts. Exp. Biol. Med. 228: 413–423; 2003.

    CAS  Google Scholar 

  • Choppin G. R.; Labonne-Wall N. Comparison of two models for metal-humic interactions. J. Radioanal. Nucl. Chem. 221: 67–71; 1997.

    Google Scholar 

  • Coppola S.; Ghibelli L. GSH extrusion and the mitochondrial pathway of apoptotic signalling. Biochem. Soc. Trans. 28(2): 56–61; 2000.

    PubMed  CAS  Google Scholar 

  • Demeterová M.; Mariščáková R.; Pistl J.; Naď P.; Šamudovská A. The effect of the probiotic strain Enterococcus faecium DSM 7134 in combination with natural humic substances on performance and health of broiler chickens. Berl. Münch. Tierärztl. Wochenschr. 122(9/10): 370–377; 2009.

    PubMed  Google Scholar 

  • EMEA. Humic acids and their sodium salts, summary report. Committee for Veterinary Medicinal Products. European Agency for the Evaluation of Medicinal Products Available via http://www.ema.europa.eu/docs/en_GB/document_library/Maximum_Residue_Limits_-_Report/2009/11/WC500014416.pdf; 1999.

  • Flohe L.; Gunzler W. A. Assay of glutathione peroxidase. Methods Enzymol. 105: 114–121; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Floreani M.; Petrone M.; Debetto P.; Palatini P. A comparison between different methods for the determination of reduced and oxidized glutathione in mammalian tissues. Free Radic. Res. 26: 449–455; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Foti M. C. Antioxidant properties of phenols. J. Pharm. Pharmacol. 59: 1673–1685; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Hseu Y. C.; Chen S. C.; Chen Y. L.; Chen J. Y.; Lee M. L.; Lu F. J.; Wu F. Y.; Lai J. S.; Yang H. L. Humic acid induced genotoxicity in human peripheral blood lymphocytes using comet and sister chromatid exchange assay. J. Hazard. Mater. 153: 784–791; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Hseu Y. C.; Huang H. W.; Wang S. Y.; Chen H. Y.; Lu F. J.; Gau R. J.; Yang H. L. Humic acid induces apoptosis in human endothelial cells. Toxicol. Appl. Pharmacol. 182: 34–43; 2002a.

    Article  PubMed  CAS  Google Scholar 

  • Hseu Y. C.; Lu F. J.; Engelking L. R.; Chen C. L.; Chen Y. H.; Yang H. L. Humic acid-induced echinocyte transformation in human erythrocytes: characterization of morphological changes and determination of the mechanism underlying damage. J. Toxicol. Environ. Health A 60: 215–230; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Hseu Y. C.; Wang S. Y.; Chen H. Y.; Lu F. J.; Gau R. J.; Chang W. C.; Liu T. Z.; Yang H. L. Humic acid induces the generation of nitric oxide in human umbilical vein endothelial cells: stimulation of nitric oxide synthase during cell injury. Free Radic. Biol. Med. 32: 619–629; 2002b.

    Article  PubMed  CAS  Google Scholar 

  • Jezierski A.; Czechowski F.; Jerzykiewicz M.; Chen Y.; Drozd J. Electron paramagnetic resonance (EPR) studies on stable and transient radicals in b\humic acids from compost, soil, peat and brown coal. Spectrochim. Acta A Mol. Biomol. Spectrosc. 56: 379–385; 2000.

    Article  Google Scholar 

  • Johnson D.; Lardy H. Isolation of liver or kidney mitochondria. Methods Enzymol. 10: 94–96; 1967.

    Article  CAS  Google Scholar 

  • Joone G. K.; Dekker J.; van Rensburg C. E. Investigation of the immunostimulatory properties of oxihumate. Z. Naturforsch. 58: 263–267; 2003.

    CAS  Google Scholar 

  • Joone G. K.; Rensburg C. E. An in vitro investigation of the anti-inflammatory properties of potassium humate. Inflammation 28: 169–174; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Klocking R.; Helbig B.; Schotz G.; Schacke M.; Wutzler P. Anti-HSV-1 activity of synthetic humic acid-like polymers derived from p-diphenolic starting compounds. Antivir. Chem. Chemother. 13: 241–249; 2002.

    PubMed  CAS  Google Scholar 

  • Kucukersan S.; Kucukersan K.; Colpan I.; Goncuoglu E.; Reisli Z.; Yesilbag D. The effect of humic acid on egg production and egg traits of laying hen. Vet. Med. 50: 406–410; 2005.

    CAS  Google Scholar 

  • Lee C. K.; Klopp R. G.; Weindruch R.; Prolla T. A. Gene expression profile of aging and its retardation by caloric restriction. Science 285: 1390–1393; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Liang H. J.; Tsai C. L.; Chen P. Q.; Lu F. J. Oxidative injury induced by synthetic humic acid polymer and monomer in cultured rabbit articular chondrocytes. Life Sci. 65: 1163–1173; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Masini J. C. The use of linear potentiometric titration curve in the determination of alkalinity and acid-based properties of diluted solutions of humic substances. Talanta 41: 1383–1389; 1994.

    Google Scholar 

  • Medina J.; Moreno-Otero R. Pathophysiological basis for antioxidant therapy in chronic liver disease. Drugs 65: 2445–2461; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Pouget Ch; Lauthier F.; Simon A.; Fagnere C.; Basly J.-F.; Delage Ch; Chulia A.-J. Flavonoids: structural requirements for antiproliferative activity on breast cancer cells. Bioorg. Med. Chem. Lett. 11(24): 3095–3097; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Rath N. C.; Richards M. P.; Huff W. E.; Huff G. R.; Balog J. M. Changes in the tibial growth plates of chickens with thiram-induced dyschondroplasia. J. Comp. Pathol. 133: 41–52; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Rice-Evans C. A.; Miller N. J.; Paganga G. Structure–antioxidant activity relationships of flavanoids and phenolic acids. Free Radic. Biol. Med. 20(7): 933–956; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Rydstrom J. Mitochondrial transhydrogenase—a key enzyme in insulin secretion and, potentially, diabetes. Trends Biochem. Sci. 31: 355–358; 2006.

    Article  PubMed  Google Scholar 

  • Schafer F. Q.; Buettner G. R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 30: 1191–1212; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Schepetkin I. A.; Khlebnikov A. I.; Ah S. Y.; Woo S. B.; Jeong C. S.; Klubachuk O. N.; Kwon B. S. Characterization and biological activities of humic substances from mumie. J. Agr. Food Chem. 51: 5245–5254; 2003.

    Article  CAS  Google Scholar 

  • Visser S. A. Effect of humic substances on mitochondrial respiration and oxidative phosphorylation. Sci. Total Environ. 62: 347–354; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Woo S. H.; Park I. C.; Park M. J.; Lee H. C.; Lee S. J.; Chun Y. J.; Lee S. I.; Rhee C. H. Arsenic trioxide induces apoptosis through a reactive oxygen species-dependent pathway and loss of mitochondrial membrane potential in HeLa cells. Int. J. Oncol. 21: 57–63; 2002.

    PubMed  CAS  Google Scholar 

  • Yang H. L.; Hseu Y Ch; Hseu Y. T.; Lu F. J.; Lin E.; Lai J. S. Humic acid induces apoptosis in human premyelocytic leukemia HL-60 cells. Life Sci. 75: 1817–1831; 2004.

    PubMed  CAS  Google Scholar 

  • Yasar S.; Gokcimen A.; Altunas I.; Yonden Z.; Petekkaya E. Performance and ideal histomorphology of rats treated with humic acid preparations. J. Anim. Physiol. Anim. Nutr. 86: 257–264; 2002.

    Article  CAS  Google Scholar 

  • Yoruk M. A.; Gul M.; Hayirli A.; Macit M. The effects of supplementation of humate and probiotic on egg production and quality parameters during the late laying period in hens. Poultry Sci. 83: 84–88; 2004.

    CAS  Google Scholar 

  • Zhai S. S.; Kimbrough R. D.; Meng B.; Han J. Y.; LeVois M.; Hou X.; Yi X. N. Kashin–Beck disease: a cross-sectional study in seven villages in the People’s Republic of China. J. Toxicol. Environ. Health 30: 239–259; 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Financial support of the Slovak Grant Agency for Science VEGA 1/0799/09 is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janka Vašková.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vašková, J., Veliká, B., Pilátová, M. et al. Effects of humic acids in vitro. In Vitro Cell.Dev.Biol.-Animal 47, 376–382 (2011). https://doi.org/10.1007/s11626-011-9405-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-011-9405-8

Keywords

Navigation