Skip to main content
Log in

A hybrid model for the neural representation of complex mental processing in the human brain

  • Review Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

In the present conceptual review several theoretical and empirical sources of information were integrated, and a hybrid model of the neural representation of complex mental processing in the human brain was proposed. Based on empirical evidence for strategy-related and inter-individually different task-related brain activation networks, and further based on empirical evidence for a remarkable overlap of fronto-parietal activation networks across different complex mental processes, it was concluded by the author that there might be innate and modular organized neuro-developmental starting regions, for example, in intra-parietal, and both medial and middle frontal brain regions, from which the neural organization of different kinds of complex mental processes emerge differently during individually shaped learning histories. Thus, the here proposed model provides a hybrid of both massive modular and holistic concepts of idiosyncratic brain physiological elaboration of complex mental processing. It is further concluded that 3-D information, obtained by respective methodological approaches, are not appropriate to identify the non-linear spatio-temporal dynamics of complex mental process-related brain activity in a sufficient way. How different participating network parts communicate with each other seems to be an indispensable aspect, which has to be considered in particular to improve our understanding of the neural organization of complex cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achtziger A, Fehr T, Oettingen G, Gollwitzer PM, Rockstroh B (2009) Strategies of intention formation are reflected in continuous MEG activity. Soc Neurosci 4:11–27

    Article  PubMed  Google Scholar 

  • Adleman NE, Menon V, Blasey CM, White CD, Warsofsky IS, Glover GH, Reiss AL (2002) A developmental fMRI study of the Stroop color-word task. Neuroimage 16:61–75

    Article  PubMed  Google Scholar 

  • Arsalidou M, Taylor MJ (2011) Is 2 + 2 = 4? Meta-analysis of brain areas needed for numbers and calculations. Neuroimage 54:2382–2393

    Article  PubMed  Google Scholar 

  • Ashcraft MH (1982) The development of mental arithmetic: a chronometric approach. Dev Rev 2:213–236

    Article  Google Scholar 

  • Ashcraft MH (1987) Children’s knowledge of simple arithmetic: a developmental model and simulation. In: Bisanz J, Brainerd CJ, Kail R (eds) Formal methods in developmental psychology: progress in developmental research. Springer, New York, pp 302–338

    Chapter  Google Scholar 

  • Atmanspacher H, Rotter S (2008) Interpreting neurodynamics: concepts and facts. Cogn Neurodyn 2:297–318

    Article  PubMed  Google Scholar 

  • Baddeley AD (1992) Working memory. Science 255:556–559

    Article  PubMed  CAS  Google Scholar 

  • Baddeley AD (1997) Human memory. Psychology Press, New York

    Google Scholar 

  • Baron-Cohen S (1995) Mindblindness. MIT Press, Cambridge

    Google Scholar 

  • Barrett HC, Kurzban R (2006) Modularity in cognition: framing the debate. Psychol Rev 113:628–647

    Article  PubMed  Google Scholar 

  • Basar E (1980) EEG-brain dynamics—relation between EEG and brain evoked potentials. Elsevier/North Holland Biomedical Press, The Netherlands

    Google Scholar 

  • Basar E (1999) Brain function and oscillations: II. Integrative brain function. Neurophysiology and cognitive processes. Springer, Heidelberg

    Book  Google Scholar 

  • Basar E (2004) Memory and brain dynamics: oscillations integrating attention, perception, learning and memory. CRC Press, FL

    Book  Google Scholar 

  • Basar E (2005) Memory as a “whole brain work”. A large-scale model based on “oscillations in super-synergy”. Int J Psychophysiol 58:199–226

    Article  PubMed  Google Scholar 

  • Basar E (2006) The theory of the whole-brain-work. Int J Psychophysiol 60:133–138

    Article  PubMed  Google Scholar 

  • Basar E (2011) Brain–body–mind in the nebulous cartesian system: a holistic approach. Springer, Heidelberg

    Book  Google Scholar 

  • Bassett DS, Gazzaniga MS (2011) Understanding complexity in the human brain. Trends Cogn Sci 15:200–209

    Article  PubMed  Google Scholar 

  • Burbaud P, Camus O, Guehl D, Bioulac B, Caille J, Allard M (2000) Influence of cognitive strategies on the pattern of cortical activation during mental subtraction. A functional imaging study in human subjects. Neurosci Lett 287:76–80

    Article  PubMed  CAS  Google Scholar 

  • Buss DM (1992) Mate preference mechanisms: consequences for partner choice and intrasexual competition. In: Barkow JH, Cosmides L, Tooby J (eds) The adapted mind: evolutionary psychology and the generation of culture. Oxford University Press, Oxford, pp 249–266

    Google Scholar 

  • Caramazza A (1986) On drawing inferences about the structure of normal cognitive systems from the analyses of patterns of impaired performance: the case for single-patient studies. Brain Cogn 5:41–66

    Article  PubMed  CAS  Google Scholar 

  • Casey BJ, Davidson M, Rosen B (2002) Functional magnetic resonance imaging: basic principles of and application to developmental science. Dev Sci 5:301–309

    Article  Google Scholar 

  • Chochon F, Cohen L, van de Moortele PF, Dehaene S (1999) Differential contributions of the left and right inferior parietal lobules to number processing. J Cogn Neurosci 11:617–630

    Article  PubMed  CAS  Google Scholar 

  • Colliaux D, Molter C, Yamaguchi Y (2009) Working memory dynamics and spontaneous activity in a flip-flop oscillations network model with a Milner attractor. Cogn Neurodyn 3:141–151

    Article  PubMed  Google Scholar 

  • Corbetta M, Miezin FM, Schulman GL, Petersen SE (1993) A PET study of visuo-spatial attention. J Neurosci 13:1202–1226

    PubMed  CAS  Google Scholar 

  • Dehaene S (1992) Varieties of numerical abilities. Cognition 44:1–42

    Article  PubMed  CAS  Google Scholar 

  • Dehaene S (1996) The organization of brain activations in number comparison, event related potentials and the additive factors method. J Cogn Neurosci 81:47–68

    Article  Google Scholar 

  • Dehaene S, Cohen L (1995) Towards an anatomical and functional model of number processing. Math Cogn 1:83–120

    Google Scholar 

  • Dehaene S, Piazza M, Pinel P, Cohen L (2003) Three parietal circuits for number processing. Cogn Neuropsychol 20:487–506

    Article  PubMed  Google Scholar 

  • Dehaene S, Molko N, Cohen L, Wilson AJ (2004) Arithmetic and the brain. Curr Opin Neurobiol 14:218–224

    Article  PubMed  CAS  Google Scholar 

  • Diekamp B, Kalt T, Güntürkün O (2002) Working memory neurons in pigeons. J Neurosci 22:RC210

    PubMed  Google Scholar 

  • Duchaine B, Yovel B, Butterworth E, Nakayama K (2004) Elimination of all domain-general hypotheses of prosopagnosia in a single individual: evidence for an isolated deficit in 2nd order configural face processing. J Vis 4:214

    Article  Google Scholar 

  • Fehr T (2008a) Complex mental processing and psychophysiology. Habilitation. University of Bremen, Germany

    Google Scholar 

  • Fehr T (2008b) Magnetenzephalographie (MEG). In: Gauggel S, Herrmann M (eds) Handbuch der Neuro-und Biopsychologie. Hogrefe, Göttingen

    Google Scholar 

  • Fehr T (2009) Chancen und Grenzen von Methoden der kognitiven Neurowissenschaften—Funktionelle Magnetresonanztomographie und Biosignalanalyse im Kontext der Entwicklungsneurophysiologie. Zeitschrift für Gestaltpädagogik 20:29–43

    Google Scholar 

  • Fehr T (2011) Savants—die neuronale organisation komplexer mentaler Prozesse. In: Dresler M (ed) Kognitive Leistungen—Intelligenz und mentale Fähigkeiten im Spiegel der Neurowissenschaften. Spektrum Akademischer Verlag, Heidelberg, pp 107–124

    Google Scholar 

  • Fehr T, Achtziger A, Hinrichs H, Herrmann M (2003) Interindividual differences in oscillatory brain activity in higher cognitive functions—methodological approaches in analyzing continuous MEG data. In: Reinvang I, Greenlee MW, Herrmann M (eds) The cognitive neuroscience of individual differences. Bis, Oldenburg, pp 101–120

    Google Scholar 

  • Fehr T, Code C, Herrmann M (2007) Common brain regions underlying different arithmetic operations as revealed by conjunct fMRI–BOLD activation. Brain Res 1172:93–102

    Article  PubMed  CAS  Google Scholar 

  • Fehr T, Code C, Herrmann M (2008a) Auditory task presentation reveals predominantly right hemispheric fMRI activation patterns during mental calculation. Neurosci Lett 431:39–44

    Article  PubMed  CAS  Google Scholar 

  • Fehr T, Erhard P, Herrmann M (2008b) Prodigious calculation performance and neural plasticity. In: Front hum neurosci conference abstract: 10th international conference on cognitive neuroscience. doi:10.3389/conf.neuro.09.2009.01.307

  • Fehr T, Weber J, Willmes K, Herrmann M (2010) Neural correlates in exceptional mental arithmetic—about the neural architecture of prodigious skills. Neuropsychologia 48:1407–1416

    Article  PubMed  Google Scholar 

  • Fehr T, Wallace G, Erhard P, Herrmann M (2011) The functional neuroanatomy of expert calendar calculation: a matter of strategy? Neurocase 17:360–371

    Article  PubMed  Google Scholar 

  • Feredoes E, Postle BR (2007) Localisation of load sensitivity of working memory storage: quantitatively and qualitatively discrepant results yielded by single-subject and group averaged approaches to fMRI group analysis. Neuroimage 35:881–903

    Article  PubMed  Google Scholar 

  • Fodor J (1983) The modularity of mind. MIT Press, Cambridge

    Google Scholar 

  • Fuster JM (2006) The cognit: a network model of cortical representation. Int J Psychophysiol 60:125–132

    Article  PubMed  Google Scholar 

  • Glabus MF, Horwitz B, Holt JL, Kohn PD, Gerton BK, Callicott JH, Meyer-Lindenberg A, Berman KF (2003) Interindividual differences in functional interactions among prefrontal, parietal and parahippocampal regions during working memory. Cereb Cortex 13:1352–1361

    Article  PubMed  Google Scholar 

  • Goldman-Rakic PS (1984) Modular organisation of prefrontal cortex. Trends Neurosci 7:419–424

    Article  Google Scholar 

  • Goldman-Rakic PS (1988) Topography of cognition: parallel distributed networks in primate association cortex. Annu Rev Neurosci 11:137–156

    Article  PubMed  CAS  Google Scholar 

  • Güntekin B, Basar E (2010) A new interpretation of P300 responses upon analysis of coherences. Cogn Neurodyn 4:107–118

    Article  PubMed  Google Scholar 

  • Hartshorne MF (1995) Functional magnetic resonance imaging. In: Orrison WW, Lewine JD, Sanders JA, Hartshorne MF (eds) Functional brain imaging. Moshby, St. Louis, pp 187–212

    Google Scholar 

  • Hauser MD, MacNeilage G, Ware M (1996) Numerical representations in primates. Proc Natl Acad Sci USA 93:1514–1517

    Article  PubMed  CAS  Google Scholar 

  • Hermer L, Spelke ES (1996) Modularity and development: the case of spatial reorientation. Cognition 61:195–232

    Article  PubMed  CAS  Google Scholar 

  • Houdé O, Tzourio-Mazoyer N (2003) Neural foundations of logical and mathematical cognition. Nat Rev Neurosci 4:507–514

    Article  PubMed  Google Scholar 

  • Houdé O, Zago L, Mellet E, Moutier S, Pineau A, Mazoyer B, Tzourio-Mazoyer N (2000) Shifting from the perceptual brain to the logical brain: the neural impact of cognitive inhibition training. J Cogn Neurosci 12:721–728

    Article  PubMed  Google Scholar 

  • Johnson MH (2001) Functional brain development in humans. Nat Rev Neurosci 2:475–483

    Article  PubMed  CAS  Google Scholar 

  • Justus TC, Ivry RB (2001) The cognitive neuropsychology of the cerebellum. Int Rev Psychiatr 13:276–282

    Article  Google Scholar 

  • Kanwisher N (2000) Domain specificity in face perception. Nat Neurosci 3:759–763

    Article  PubMed  CAS  Google Scholar 

  • Lee KH, Choi YY, Gray JR, Cho SH, Chae JH, Lee S, Kim K (2006) Neural correlates of superior intelligence: stronger recruitment of posterior parietal cortex. Neuroimage 29:578–586

    Article  PubMed  Google Scholar 

  • Leslie AM (1994) ToMM, ToBy, and agency: core architecture and domain specificity. In: Hirschfeld LA, Gelman SA (eds) Mapping the mind: domain specificity in cognition and culture. Cambridge University Press, Cambridge, pp 119–148

    Chapter  Google Scholar 

  • Lewine JD, Orrison WW (1995) Magnetencephalography and magnetic source imaging. In: Orrison WW, Lewine JD, Sanders JA, Hartshorne MF (eds) Functional brain imaging. Moshby, St. Louis, pp 369–417

    Google Scholar 

  • Lo JT (2010) Functional model of biological neural networks. Cogn Neurodyn 4:295–313

    Article  PubMed  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  PubMed  CAS  Google Scholar 

  • Mandler G, Shebo BJ (1982) Subitizing: an analysis of its component processes. J Exp Psychol Gen 111:1–22

    Article  PubMed  CAS  Google Scholar 

  • Marr D (1982) Vision. H. Freeman, New York

    Google Scholar 

  • Miller MB, Donovan C-L, Bennett CM, Aminoff EM, Mayer RE (2012) Individual differences in cognitive style and strategy predict similarities in the patterns of brain activity between individuals. Neuroimage 59:83–93

    Article  PubMed  Google Scholar 

  • Mizraji E, Pomi A, Valle-Lisboa JC (2009) Dynamic searching in the brain. Cogn Neurodyn 3:401–414

    Article  PubMed  Google Scholar 

  • Nieder A (2005) Counting on neurons: the neurobiology of numerical competence. Nat Rev Neurosci 6:177–190

    Article  PubMed  CAS  Google Scholar 

  • Nieder A, Diester I, Tudusciuc O (2006) Temporal and spatial enumeration processes in the primate parietal cortex. Science 313:1431–1435

    Article  PubMed  CAS  Google Scholar 

  • Nobre AC, Sebestyen GN, Gitelman DR, Mesulam MM, Frackowiak RSJ, Frith CD (1997) Functional localisation of the system for visuospatial attention using positron emission tomography. Brain 120:515–533

    Article  PubMed  Google Scholar 

  • Nunez-Pena MI, Cortinas M, Escera C (2006) Problem size effect and processing strategies in mental arithmetic. NeuroReport 17:357–360

    Article  PubMed  Google Scholar 

  • Öhman A, Mineka S (2001) Fears, phobias, and preparedness: toward an evolved module of fear and fear learning. Psychol Rev 108:483–522

    Article  PubMed  Google Scholar 

  • Pinel P, Le Clec’ HG, van de Moortele PF, Naccache L, Le Bihan D, Dehaene S (1999) Event related fMRI analysis of the cerebral circuit for number comparison. NeuroReport 107:1473–1479

    Article  Google Scholar 

  • Poldrack RA (2006) Can cognitive processes be inferred from neuroimaging data? Trends Cogn Sci 10:59–63

    Article  PubMed  Google Scholar 

  • Raichle ME, Fiez JA, Videen TO, MacLeod AM, Pardo JV, Fox PT, Petersen SE (1994) Practice-related changes in human brain functional anatomy during non-motor learning. Cereb Cortex 4:8–26

    Article  PubMed  CAS  Google Scholar 

  • Regenbogen C, Herrmann M, Fehr T (2010) The neural processing of voluntary completed, real and virtual violent and non-violent computer game scenarios displaying pre-defined actions in gamers and non-gamers. Soc Neurosci 5:221–240

    Article  PubMed  Google Scholar 

  • Reinvang I, Greenlee MW, Herrmann M (eds) (2003) The cognitive neuroscience of individual differences. Bis, Oldenburg

    Google Scholar 

  • Rombouts SARB, Barkhof F, Witter MP, Machielsen WCM, Scheltens P (2001) Anterior medial temporal lobe activation during attempted retrieval of encoded visuospatial scenes: an event-related fMRI study. Neuroimage 14:67–76

    Article  PubMed  CAS  Google Scholar 

  • Rozin P, Haidt J, McCauley CR (2000) Disgust. In: Lewis M, Haviland J (eds) Handbook of emotions, 2nd edn. Guilford Press, New York, pp 637–653

    Google Scholar 

  • Rüsseler J, Münte TF (2008) Elektroenzephalogramm (EEG) und ereigniskorrelierte Potenziale. In: Gauggel S, Herrmann M (eds) Handbuch der Neuro-und Biopsychologie. Hogrefe, Göttingen

    Google Scholar 

  • Sakai K, Hikosaka O, Miyauchi S, Takino R, Saski Y, Putz B (1998) Transition of brain activation from frontal to parietal areas in visuomotor sequence learning. J Neurosci 18:1827–1840

    PubMed  CAS  Google Scholar 

  • Sanders JA (1995) Magnetic resonance imaging. In: Orrison WW, Lewine JD, Sanders JA, Hartshorne MF (eds) Functional brain imaging. Moshby, St. Louis, pp 145–186

    Google Scholar 

  • Sanders JA, Orrison WW (1995) Functional magnetic resonance imaging. In: Orrison WW, Lewine JD, Sanders JA, Hartshorne MF (eds) Functional brain imaging. Moshby, St. Louis, pp 239–326

    Google Scholar 

  • Scholl B, Leslie A (1999) Modularity, development and “theory of mind”. Mind Lang 14:131–153

    Article  Google Scholar 

  • Siegler RS, Shrager J (1984) Strategy choices in addition: how do children know what to do? In: Sophian C (ed) Origins of cognitive skills. Erlbaum, Hillsdale, pp 229–293

    Google Scholar 

  • Singer W (2009) Distributed processing and temporal codes in neuronal networks. Cogn Neurodyn 3:189–196

    Article  PubMed  Google Scholar 

  • Thirion B, Pinel P, Mériaux S, Roche A, Dehaene S, Poline J-B (2007) Analysis of a large fMRI cohort: statistical and methodological issues for group analyses. Neuroimage 35:105–120

    Article  PubMed  Google Scholar 

  • Tyler LK, Stamatakis EA, Bright P, Acres K, Abdallah S, Rodd JM, Moss HE (2004) Processing objects at different levels of specificity. J Cogn Neurosci 16:351–362

    Article  PubMed  CAS  Google Scholar 

  • Valera EM, Faraone SV, Biederman J, Poldrack RA, Seidman LJ (2005) Functional neuroanatomy of working memory in adults with attention-deficit/hyperactivity disorder. Biol Psychiatry 57:439–447

    Article  PubMed  Google Scholar 

  • Wang L (2007) Interactions between neural networks: a mechanism for tuning chaos and oscillations. Cogn Neurodyn 1:185–188

    Article  PubMed  Google Scholar 

  • Wynn K (1992) Addition and subtraction by human infants. Nature 358:749–750

    Article  PubMed  CAS  Google Scholar 

  • Wynn K (2000) Findings of addition and subtraction in infants are robust and consistent. Child Dev 71:1535–1536

    Article  PubMed  CAS  Google Scholar 

  • Yener GG, Basar E (2010) Sensory evoked and event related oscillations in Alzheimer’s disease: a short review. Cogn Neurodyn 4:263–274

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I want to especially thank Professor Dr. Erol Basar for a lot of fundamental input that helped me to integrate my own work of the past years into the complexity of contemporary model assumptions about mental brain dynamics and developmental trajectories related to complex mental processing in humans. Furthermore, I want to thank Professor Dr. Heinze and Professor Dr. Hinrichs from Magdeburg University who supported my work on the neural representation of complex mental processing in humans directly and indirectly during the last decade. I also want to thank Prof. Dr. Dr. Manfred Herrmann for providing me with the necessary laboratory equipment at Bremen University, and furthermore, for several controversial discussions that especially improved my understanding about the reality of science politics. My work was in part supported by the Leibniz Institute for Neurobiology, University of Magdeburg, by the Center for Cognitive Sciences, Bremen University, and by the Center for Advanced Imaging, Universities of Bremen and Magdeburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Fehr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fehr, T. A hybrid model for the neural representation of complex mental processing in the human brain. Cogn Neurodyn 7, 89–103 (2013). https://doi.org/10.1007/s11571-012-9220-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-012-9220-2

Keywords

Navigation