Skip to main content

Advertisement

Log in

Nitrated Alpha-Synuclein and Microglial Neuroregulatory Activities

  • Original Article
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Microglial neuroinflammatory responses affect the onset and progression of Parkinson’s disease (PD). We posit that such neuroinflammatory responses are, in part, mediated by microglial interactions with nitrated and aggregated α-synuclein (α-syn) released from Lewy bodies as a consequence of dopaminergic neuronal degeneration. As disease progresses, secretions from α-syn-activated microglia can engage neighboring glial cells in a cycle of autocrine and paracrine amplification of neurotoxic immune products. Such pathogenic processes affect the balance between a microglial neurotrophic and neurotoxic signature. We now report that microglia secrete both neurotoxic and neuroprotective factors after exposure to nitrated α-syn (N-α-syn). Proteomic (surface enhanced laser desorption–time of flight, 1D sodium dodecyl sulfate electrophoresis, and liquid chromatography-tandem mass spectrometry) and limited metabolomic profiling demonstrated that N-α-syn-activated microglia secrete inflammatory, regulatory, redox-active, enzymatic, and cytoskeletal proteins. Increased extracellular glutamate and cysteine and diminished intracellular glutathione and secreted exosomal proteins were also demonstrated. Increased redox-active proteins suggest regulatory microglial responses to N-α-syn. These were linked to discontinuous cystatin expression, cathepsin activity, and nuclear factor-kappa B activation. Inhibition of cathepsin B attenuated, in part, N-α-syn microglial neurotoxicity. These data support multifaceted microglia functions in PD-associated neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarraberes FA, Dice JF (2001) A molecular chaperone complex at the lysosomal membrane is required for protein translocation. J Cell Sci 114:2491–2499

    PubMed  CAS  Google Scholar 

  • Ahn TB, Jeon BS (2006) Protective role of heat shock and heat shock protein 70 in lactacystin-induced cell death both in the rat substantia nigra and PC12 cells. Brain Res 1087:159–167

    Article  PubMed  CAS  Google Scholar 

  • Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM (2002) Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295:865–868

    Article  PubMed  CAS  Google Scholar 

  • Bai J, Nakamura H, Hattori I, Tanito M, Yodoi J (2002) Thioredoxin suppresses 1-methyl-4-phenylpyridinium-induced neurotoxicity in rat PC12 cells. Neurosci Lett 321:81–84

    Article  PubMed  CAS  Google Scholar 

  • Baldi A, Lombardi D, Russo P, Palescandolo E, De Luca A, Santini D, Baldi F, Rossiello L, Dell, Anna ML, Mastrofrancesco A, Maresca V, Flori E, Natali PG, Picardo M, Paggi MG (2005) Ferritin contributes to melanoma progression by modulating cell growth and sensitivity to oxidative stress. Clin Cancer Res 11:3175–3183

    Article  PubMed  CAS  Google Scholar 

  • Benner EJ, Banerjee R, Reynolds AD, Sherman S, Pisarev V, Tsiperson V, Nemachek C, Ciborowski P, Przedborski S, Mosley RL, Gendelman HE (2008) Nitrated a-synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLoS ONE 3:e1376

  • Beschorner R, Simon P, Schauer N, Mittelbronn M, Schluesener HJ, Trautmann K, Dietz K, Meyermann R (2007) Reactive astrocytes and activated microglial cells express EAAT1, but not EAAT2, reflecting a neuroprotective potential following ischaemia. Histopathology 50:897–910

    Article  PubMed  CAS  Google Scholar 

  • Brannvall K, Hjelm H, Korhonen L, Lahtinen U, Lehesjoki AE, Lindholm D (2003) Cystatin-B is expressed by neural stem cells and by differentiated neurons and astrocytes. Biochem Biophys Res Commun 308:369–374

    Article  PubMed  CAS  Google Scholar 

  • Buck MR, Karustis DG, Day NA, Honn KV, Sloane BF (1992) Degradation of extracellular-matrix proteins by human cathepsin B from normal and tumour tissues. Biochem J 282(Pt 1):273–278

    PubMed  CAS  Google Scholar 

  • Buhling F, Fengler A, Brandt W, Welte T, Ansorge S, Nagler DK (2000) Review: novel cysteine proteases of the papain family. Adv Exp Med Biol 477:241–254

    PubMed  CAS  Google Scholar 

  • Chapman HA Jr, Reilly JJ Jr, Yee R, Grubb A (1990) Identification of cystatin C, a cysteine proteinase inhibitor, as a major secretory product of human alveolar macrophages in vitro. Am Rev Respir Dis 141:698–705

    PubMed  CAS  Google Scholar 

  • Chretien F, Vallat-Decouvelaere AV, Bossuet C, Rimaniol AC, Le Grand R, Le Pavec G, Creminon C, Dormont D, Gray F, Gras G (2002) Expression of excitatory amino acid transporter-2 (EAAT-2) and glutamine synthetase (GS) in brain macrophages and microglia of SIVmac251-infected macaques. Neuropathol Appl Neurobiol 28:410–417

    Article  PubMed  CAS  Google Scholar 

  • Ciborowski P, Kadiu I, Rozek W, Smith L, Bernhadt K, Fladseth M, Ricardo-Dukelow M, Gendelman HE (2007) Investigating the human immunodeficiency virus type 1-infected monocyte-derived macrophage secretome. Virology 363:198–209

    Article  PubMed  CAS  Google Scholar 

  • Crawford GD Jr, Le WD, Smith RG, Xie WJ, Stefani E, Appel SH (1992) A novel N18TG2 × mesencephalin cell hybrid expresses properties that suggest a dopaminergic cell line of substantia nigra origin. J Neuroscience 12:3392–3398

    CAS  Google Scholar 

  • Czlonkowska A, Kohutnicka M, Kurkowska-Jastrzebska I, Czlonkowski A (1996) Microglial reaction in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced Parkinson’s disease mice model. Neurodegeneration 5:137–143

    Article  PubMed  CAS  Google Scholar 

  • Dobrenis K (1998) Microglia in cell culture and in transplantation therapy for central nervous system disease. Methods 16:320–344

    Article  PubMed  CAS  Google Scholar 

  • Engelkamp D, Schafer BW, Erne P, Heizmann CW (1992) S100 alpha, CAPL, and CACY: molecular cloning and expression analysis of three calcium-binding proteins from human heart. Biochemistry 31:10258–10264

    Article  PubMed  CAS  Google Scholar 

  • Enose Y, Destache CJ, Mack AL, Anderson JR, Ullrich F, Ciborowski PS, Gendelman HE (2005) Proteomic fingerprints distinguish microglia, bone marrow, and spleen macrophage populations. Glia 51:161–172

    Article  PubMed  Google Scholar 

  • Faure J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C, Blot B, Grange J, Schoehn G, Goldberg Y, Boyer V, Kirchhoff F, Raposo G, Garin J, Sadoul R (2006) Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 31:642–648

    Article  PubMed  CAS  Google Scholar 

  • Fernando MR, Nanri H, Yoshitake S, Nagata-Kuno K, Minakami S (1992) Thioredoxin regenerates proteins inactivated by oxidative stress in endothelial cells. Eur J Biochem 209:917–922

    Article  PubMed  CAS  Google Scholar 

  • Foster JA, Rush SJ, Brown IR (1995) Localization of constitutive and hyperthermia-inducible heat shock mRNAs (hsc70 and hsp70) in the rabbit cerebellum and brainstem by non-radioactive in situ hybridization. J Neurosci Res 41:603–612

    Article  PubMed  CAS  Google Scholar 

  • Gan L, Ye S, Chu A, Anton K, Yi S, Vincent VA, von Schack D, Chin D, Murray J, Lohr S, Patthy L, Gonzalez-Zulueta M, Nikolich K, Urfer R (2004) Identification of cathepsin B as a mediator of neuronal death induced by Abeta-activated microglial cells using a functional genomics approach. J Biol Chem 279:5565–5572

    Article  PubMed  CAS  Google Scholar 

  • Gerber A, Welte T, Ansorge S, Buhling F (2000) Expression of cathepsins B and L in human lung epithelial cells is regulated by cytokines. Adv Exp Med Biol 477:287–292

    Article  PubMed  CAS  Google Scholar 

  • Glanzer JG, Enose Y, Wang T, Kadiu I, Gong N, Rozek W, Liu J, Schlautman JD, Ciborowski PS, Thomas MP, Gendelman HE (2007) Genomic and proteomic microglial profiling: pathways for neuroprotective inflammatory responses following nerve fragment clearance and activation. J Neurochem 102:627–645

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Flecha B, Reides C, Cutrin JC, Llesuy SF, Boveris A (1993) Oxidative stress produced by suprahepatic occlusion and reperfusion. Hepatology 18:881–889

    Article  PubMed  CAS  Google Scholar 

  • Gras G, Porcheray F, Samah B, Leone C (2006) The glutamate–glutamine cycle as an inducible, protective face of macrophage activation. J Leukoc Biol 80:1067–1075

    Article  PubMed  CAS  Google Scholar 

  • Hald A, Van Beek J, Lotharius J (2007) Inflammation in Parkinson’s disease: causative or epiphenomenal? Subcell Biochem 42:249–279

    PubMed  Google Scholar 

  • Hermanowicz N (2007) Drug therapy for Parkinson’s disease. Semin Neurol 27:97–105

    Article  PubMed  Google Scholar 

  • Hodaie M, Neimat JS, Lozano AM (2007) The dopaminergic nigrostriatal system and Parkinson’s disease: molecular events in development, disease, and cell death, and new therapeutic strategies. Neurosurgery 60:17–28 discussion 28–30

    Article  PubMed  Google Scholar 

  • Hubberstey A, Yu G, Loewith R, Lakusta C, Young D (1996) Mammalian CAP interacts with CAP, CAP2, and actin. J Cell Biochem 61:459–466

    Article  PubMed  CAS  Google Scholar 

  • Islam A, Adamik B, Hawari FI, Ma G, Rouhani FN, Zhang J, Levine SJ (2006) Extracellular TNFR1 release requires the calcium-dependent formation of a nucleobindin 2-ARTS-1 complex. J Biol Chem 281:6860–6873

    Article  PubMed  CAS  Google Scholar 

  • Jiang ZG, Piggee C, Heyes MP, Murphy C, Quearry B, Bauer M, Zheng J, Gendelman HE, Markey SP (2001) Glutamate is a mediator of neurotoxicity in secretions of activated HIV-1-infected macrophages. J Neuroimmunol 117:97–107

    Article  PubMed  CAS  Google Scholar 

  • Jones SL, Wang J, Turck CW, Brown EJ (1998) A role for the actin-bundling protein L-plastin in the regulation of leukocyte integrin function. Proc Natl Acad Sci USA 95:9331–9336

    Article  PubMed  CAS  Google Scholar 

  • Kadiu I, Ricardo-Dukelow M, Ciborowski P, Gendelman HE (2007) Cytoskeletal protein transformation in HIV-1-infected macrophage giant cells. J Immunol 178:6404–6415

    PubMed  CAS  Google Scholar 

  • Kagedal K, Johansson U, Ollinger K (2001) The lysosomal protease cathepsin D mediates apoptosis induced by oxidative stress. Faseb J 15:1592–1594

    PubMed  CAS  Google Scholar 

  • Kawada A, Hara K, Kominami E, Hiruma M, Akiyama M, Ishibashi A, Abe H, Ichikawa E, Nakamura Y, Watanabe S, Yamamoto T, Umeda T, Nishioka K (1997) Expression of cathepsin D and B in invasion and metastasis of squamous cell carcinoma. Br J Dermatol 137:361–366

    Article  PubMed  CAS  Google Scholar 

  • Khandhar SM, Marks WJ (2007) Epidemiology of Parkinson’s disease. Dis-Mon 53:200–205

    Article  PubMed  Google Scholar 

  • Kingham PJ, Pocock JM (2001) Microglial secreted cathepsin B induces neuronal apoptosis. J Neurochem 76:1475–1484

    Article  PubMed  CAS  Google Scholar 

  • Klegeris A, McGeer EG, McGeer PL (2007) Therapeutic approaches to inflammation in neurodegenerative disease. Curr Opin Neurol 20:351–357

    Article  PubMed  CAS  Google Scholar 

  • Kropotov A, Gogvadze V, Shupliakov O, Tomilin N, Serikov VB, Tomilin NV, Zhivotovsky B (2006) Peroxiredoxin V is essential for protection against apoptosis in human lung carcinoma cells. Exp Cell Res 312:2806–2815

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA, Gu Z, Nakamura T (2007) Inflammatory mediators leading to protein misfolding and uncompetitive/fast off-rate drug therapy for neurodegenerative disorders. Int Rev Neurobiol 82:1–27

    PubMed  CAS  Google Scholar 

  • Liu Y, Liu J, Tetzlaff W, Paty DW, Cynader MS (2006) Biliverdin reductase, a major physiologic cytoprotectant, suppresses experimental autoimmune encephalomyelitis. Free Radic Biol Med 40:960–967

    Article  PubMed  CAS  Google Scholar 

  • Loeffler DA, DeMaggio AJ, Juneau PL, Havaich MK, LeWitt PA (1994) Effects of enhanced striatal dopamine turnover in vivo on glutathione oxidation. Clin Neuropharmacol 17:370–379

    Article  PubMed  CAS  Google Scholar 

  • Mandemakers W, Morais VA, De Strooper B (2007) A cell biological perspective on mitochondrial dysfunction in Parkinson disease and other neurodegenerative diseases. J Cell Sci 120:1707–1716

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Marchler GH, Mullokandov M, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Yamashita RA, Yin JJ, Zhang D, Bryant SH (2005) CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res 33:D192–D196

    Article  PubMed  CAS  Google Scholar 

  • McCollum D, Feoktistova A, Morphew M, Balasubramanian M, Gould KL (1996) The Schizosaccharomyces pombe actin-related protein, Arp3, is a component of the cortical actin cytoskeleton and interacts with profilin. Embo J 15:6438–6446

    PubMed  CAS  Google Scholar 

  • McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38:1285–1291

    PubMed  CAS  Google Scholar 

  • Mochida S, Arai M, Ohno A, Masaki N, Ogata I, Fujiwara K (1994) Oxidative stress in hepatocytes and stimulatory state of Kupffer cells after reperfusion differ between warm and cold ischemia in rats. Liver 14:234–240

    PubMed  CAS  Google Scholar 

  • Morozov VN, Morozova T, Bray P, Hranisavljevic J, Vucelic D (1991) Survey of small molecule and ion binding to beta 2-microglobulin—possible relation to BEN. Kidney Int Suppl 34:S85–S88

    PubMed  CAS  Google Scholar 

  • Mosharov E, Cranford MR, Banerjee R (2000) The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway and its regulation by redox changes. Biochemistry 39:13005–13011

    Article  PubMed  CAS  Google Scholar 

  • Nelson DE, Ihekwaba AE, Elliott M, Johnson JR, Gibney CA, Foreman BE, Nelson G, See V, Horton CA, Spiller DG, Edwards SW, McDowell HP, Unitt JF, Sullivan E, Grimley R, Benson N, Broomhead D, Kell DB, White MR (2004) Oscillations in NF-kappaB signaling control the dynamics of gene expression. Science 306:704–708

    Article  PubMed  CAS  Google Scholar 

  • Pisitkun T, Shen RF, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA 101:13368–13373

    Article  PubMed  CAS  Google Scholar 

  • Potolicchio I, Carven GJ, Xu X, Stipp C, Riese RJ, Stern LJ, Santambrogio L (2005) Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J Immunol 175:2237–2243

    PubMed  CAS  Google Scholar 

  • Przedborski S (2005) Pathogenesis of nigral cell death in Parkinson’s disease. Parkinsonism Relat Disord 11(Suppl 1):S3–S7

    Article  PubMed  Google Scholar 

  • Przedborski S, Ischiropoulos H (2005) Reactive oxygen and nitrogen species: weapons of neuronal destruction in models of Parkinson’s disease. Antioxid Redox Signal 7:685–693

    Article  PubMed  CAS  Google Scholar 

  • Qin H, Wilson CA, Lee SJ, Zhao X, Benveniste EN (2005) LPS induces CD40 gene expression through the activation of NF-kappaB and STAT-1alpha in macrophages and microglia. Blood 106:3114–3122

    Article  PubMed  CAS  Google Scholar 

  • Ramonet D, Rodriguez MJ, Fredriksson K, Bernal F, Mahy N (2004) In vivo neuroprotective adaptation of the glutamate/glutamine cycle to neuronal death. Hippocampus 14:586–594

    Article  PubMed  CAS  Google Scholar 

  • Reynolds A, Laurie C, Mosley RL, Gendelman HE (2007) Oxidative stress and the pathogenesis of neurodegenerative disorders. Int Rev Neurobiol 82:297–325

    PubMed  CAS  Google Scholar 

  • Reynolds AD, Glanzer JG, Kadiu I, Ricardo-Dukelow M, Chaudhuri A, Ciborowski P, Cerny R, Gelman B, Thomas MP, Mosley RL, Gendelman HE (2008) Nitrated alpha-synuclein-activated microglial profiling for Parkinson’s disease. J Neurochem (in press)

  • Riccio M, Santi S, Dembic M, Di Giaimo R, Cipollini E, Costantino-Ceccarini E, Ambrosetti D, Maraldi NM, Melli M (2005) Cell-specific expression of the epm1 (cystatin B) gene in developing rat cerebellum. Neurobiol Dis 20:104–114

    Article  PubMed  CAS  Google Scholar 

  • Riese RJ, Chapman HA (2000) Cathepsins and compartmentalization in antigen presentation. Curr Opin Immunol 12:107–113

    Article  PubMed  CAS  Google Scholar 

  • Rogove AD, Tsirka SE (1998) Neurotoxic responses by microglia elicited by excitotoxic injury in the mouse hippocampus. Curr Biol 8:19–25

    Article  PubMed  CAS  Google Scholar 

  • Seo BB, Nakamaru-Ogiso E, Flotte TR, Matsuno-Yagi A, Yagi T (2006) In vivo complementation of complex I by the yeast Ndi1 enzyme. Possible application for treatment of Parkinson disease. J Biol Chem 281:14250–14255

    Article  PubMed  CAS  Google Scholar 

  • Shaked I, Tchoresh D, Gersner R, Meiri G, Mordechai S, Xiao X, Hart RP, Schwartz M (2005) Protective autoimmunity: interferon-gamma enables microglia to remove glutamate without evoking inflammatory mediators. J Neurochem 92:997–1009

    Article  PubMed  CAS  Google Scholar 

  • Shih AY, Erb H, Sun X, Toda S, Kalivas PW, Murphy TH (2006) Cystine/glutamate exchange modulates glutathione supply for neuroprotection from oxidative stress and cell proliferation. J Neurosci 26:10514–10523

    Article  PubMed  CAS  Google Scholar 

  • Simantov R (1989) Glutamate neurotoxicity in culture depends on the presence of glutamine: implications for the role of glial cells in normal and pathological brain development. J Neurochem 52:1694–1699

    Article  PubMed  CAS  Google Scholar 

  • Singh K, Deonarine D, Shanmugam V, Senger DR, Mukherjee AB, Chang PL, Prince CW, Mukherjee BB (1993) Calcium-binding properties of osteopontin derived from non-osteogenic sources. J Biochem (Tokyo) 114:702–707

    CAS  Google Scholar 

  • Terashima Y, Onai N, Murai M, Enomoto M, Poonpiriya V, Hamada T, Motomura K, Suwa M, Ezaki T, Haga T, Kanegasaki S, Matsushima K (2005) Pivotal function for cytoplasmic protein FROUNT in CCR2-mediated monocyte chemotaxis. Nat Immunol 6:827–835

    Article  PubMed  CAS  Google Scholar 

  • Thery C, Boussac M, Veron P, Ricciardi-Castagnoli P, Raposo G, Garin J, Amigorena S (2001) Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 166:7309–7318

    PubMed  CAS  Google Scholar 

  • Thomas MP, Chartrand K, Reynolds A, Vitvitsky V, Banerjee R, Gendelman HE (2007) Ion channel blockade attenuates aggregated alpha synuclein induction of microglial reactive oxygen species: relevance for the pathogenesis of Parkinson’s disease. J Neurochem 100:503–519

    Article  PubMed  CAS  Google Scholar 

  • Turk V, Turk B, Turk D (2001) Lysosomal cysteine proteases: facts and opportunities. Embo J 20:4629–4633

    Article  PubMed  CAS  Google Scholar 

  • Whitton PS (2007) Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol 150:963–976

    Article  PubMed  CAS  Google Scholar 

  • Wilms H, Zecca L, Rosenstiel P, Sievers J, Deuschl G, Lucius R (2007) Inflammation in Parkinson’s diseases and other neurodegenerative diseases: cause and therapeutic implications. Curr Pharm Des 13:1925–1928

    Article  PubMed  CAS  Google Scholar 

  • Wu DC, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi DK, Ischiropoulos H, Przedborski S (2002) Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 22:1763–1771

    PubMed  CAS  Google Scholar 

  • Wubbolts R, Leckie RS, Veenhuizen PT, Schwarzmann G, Mobius W, Hoernschemeyer J, Slot JW, Geuze HJ, Stoorvogel W (2003) Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. J Biol Chem 278:10963–10972

    Article  PubMed  CAS  Google Scholar 

  • Yeh MW, Kaul M, Zheng J, Nottet HS, Thylin M, Gendelman HE, Lipton SA (2000) Cytokine-stimulated, but not HIV-infected, human monocyte-derived macrophages produce neurotoxic levels of l-cysteine. J Immunol 164:4265–4270

    PubMed  CAS  Google Scholar 

  • Yuan H, Zheng JC, Liu P, Zhang SF, Xu JY, Bai LM (2007) Pathogenesis of Parkinson’s disease: oxidative stress, environmental impact factors and inflammatory processes. Neurosci Bull 23:125–130

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Graham DG, Montine TJ, Ho YS (2000) Enhanced N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in mice deficient in CuZn-superoxide dismutase or glutathione peroxidase. J Neuropathol Exp Neurol 59:53–61

    PubMed  CAS  Google Scholar 

  • Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, Wilson B, Zhou Y, Hong JS, Zhang J (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. Faseb J 19:533–542

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. E. Benner for providing recombinant mouse α-synuclein and Dr. S. Appel for providing the MES23.5 cell line. The authors also thank Dr. R. Lee Mosley and Robin Taylor for critical reading of the manuscript. This work was supported by the Frances and Louie Blumkin Foundation, the Community Neuroscience Pride of Nebraska Research Initiative, and the Alan Baer Charitable Trust (to H.E.G.), a University of Nebraska Medical Center Graduate Student Excellence Award and the Patterson Fellowship (to A.R.), and NIH grants 1T32 NS07488 (to A.R. and H.E.G.), and 2R37 NS36136, PO1 NS43985, PO1 MH64570, R01 MH79886 (to H.E.G.), and DK64959 (to RB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard E. Gendelman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynolds, A.D., Kadiu, I., Garg, S.K. et al. Nitrated Alpha-Synuclein and Microglial Neuroregulatory Activities. J Neuroimmune Pharmacol 3, 59–74 (2008). https://doi.org/10.1007/s11481-008-9100-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-008-9100-z

Keywords

Navigation