Skip to main content
Log in

Activities of DNA base excision repair enzymes in liver and brain correlate with body mass, but not lifespan

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Accumulation of DNA lesions compromises replication and transcription and is thus toxic to cells. DNA repair deficiencies are generally associated with cellular replicative senescence and premature aging syndromes, suggesting that efficient DNA repair is required for normal longevity. It follows that the evolution of increasing lifespan amongst animal species should be associated with enhanced DNA repair capacities. Although UV damage repair has been shown to correlate positively with mammalian species lifespan, we lack similar insight into many other DNA repair pathways, including base excision repair (BER). DNA is continuously exposed to reactive oxygen species produced during aerobic metabolism, resulting in the occurrence of oxidative damage within DNA. Short-patch BER plays an important role in repairing the resultant oxidative lesions. We therefore tested whether an enhancement of BER enzyme activities has occurred concomitantly with the evolution of increased maximum lifespan (MLSP). We collected brain and liver tissue from 15 vertebrate endotherm species ranging in MLSP over an order of magnitude. We measured apurinic/apyrimidinic (AP) endonuclease activity, as well as the rates of nucleotide incorporation into an oligonucleotide containing a single nucleotide gap (catalyzed by BER polymerase β) and subsequent ligation of the oligonucleotide. None of these activities correlated positively with species MLSP. Rather, nucleotide incorporation and oligonucleotide ligation activities appeared to be primarily (and negatively) correlated with species body mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barja G (1998) Mitochondrial free radical production and aging in mammals and birds. Ann NY Acad Sci 854:224–238

    Article  PubMed  CAS  Google Scholar 

  • Barja G, Herrero A (2000) Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J 14:312–318

    PubMed  CAS  Google Scholar 

  • Barnes DE, Lindahl T (2004) Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet 38:445–476

    Article  PubMed  CAS  Google Scholar 

  • Cabelof DC, Raffoul JJ, Yanamadala S, Ganir C, Guo Z, Heydari AR (2002a) Attenuation of DNA polymerase β-dependent base excision repair and increased DMS-induced mutagenicity in aged mice. Mutat Res 500:135–145

    Article  PubMed  CAS  Google Scholar 

  • Cabelof DC, Raffoul JJ, Yanamadala S, Guo Z, Heydari AR (2002b) Induction of DNA polymerase beta-dependent base excision repair in response to oxidative stress in vivo. Carcinogenesis 23:1419–1425

    Article  PubMed  CAS  Google Scholar 

  • Cabelof DC, Guo Z, Raffoul JJ, Sobol RW, Wilson SH, Richardson A, Heydari AR (2003a) Base excision repair deficiency caused by polymerase beta haploinsufficiency: accelerated DNA damage and increased mutational response to carcinogens. Cancer Res 63:5799–5807

    PubMed  CAS  Google Scholar 

  • Cabelof DC, Yanamadala S, Raffoul JJ, Guo Z, Soofi A, Heydari AR (2003b) Caloric restriction promotes genomic stability by induction of base excision repair and reversal of its age-related decline. DNA Repair (Amst) 2:295–307

    Article  CAS  Google Scholar 

  • Cabelof DC, Ikeno Y, Nyska A, Busuttil RA, Anyangwe N, Vijg J, Matherly LH, Tucker JD, Wilson SH, Richardson A, Heydari AR (2006) Haploinsufficiency in DNA polymerase beta increases cancer risk with age and alters mortality rate. Cancer Res 66:7460–7465

    Article  PubMed  CAS  Google Scholar 

  • Chaudhry MA (2007) Base excision repair of ionizing radiation-induced DNA damage in G1 and G2 cell cycle phases. Cancer Cell Int 7:15

    Article  PubMed  Google Scholar 

  • Cortopassi GA, Wang E (1996) There is substantial agreement among interspecies estimates of DNA repair activity. Mech Ageing Dev 91:211–218

    Article  PubMed  CAS  Google Scholar 

  • Croteau DL, Bohr VA (1997) Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J Biol Chem 272:25409–25412

    Article  PubMed  CAS  Google Scholar 

  • de Magalhaes JP, Costa J, Toussaint O (2005) HAGR: the human ageing genomic resources. Nucleic Acids Res 33:D537–D543

    Google Scholar 

  • Else PL, Hulbert AJ (1985) Mammals: an allometric study of metabolism at tissue and mitochondrial level. Am J Physiol 248:R415–R421

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Foksinski M, Rozalski R, Guz J, Ruszkowska B, Sztukowska P, Piwowarski M, Klungland A, Olinski R (2004) Urinary excretion of DNA repair products correlates with metabolic rates as well as maximum life spans of different mammalian species. Free Radic Biol Med 37:1449–1454

    Article  PubMed  CAS  Google Scholar 

  • Francis AA, Lee WH, Regan JD (1981) The relationship of DNA excision repair of ultraviolet-induced lesions to the maximum life span of mammals. Mech Ageing Dev 16:181–189

    Article  PubMed  CAS  Google Scholar 

  • Garland T Jr, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41:18–32

    Google Scholar 

  • Garland T Jr, Dickerman AW, Janis CM, Jones JA (1993) Phylogenetic analysis of covariance by computer simulation. Syst Biol 42:265–292

    Google Scholar 

  • Grube K, Bürkle A (1992) Poly(ADP-ribose) polymerase activity in mononuclear leukocytes of 13 mammalian species correlates with species-specific life span. Proc Natl Acad Sci USA 89:11759–11763

    Article  PubMed  CAS  Google Scholar 

  • Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han K-L, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768

    Article  PubMed  CAS  Google Scholar 

  • Hall KY, Hart RW, Benirschke AK, Walford RL (1984) Correlation between ultraviolet-induced DNA repair in primate lymphocytes and fibroblast and species maximum achievable life span. Mech Ageing Dev 24:163–173

    Article  PubMed  CAS  Google Scholar 

  • Hart RW, Setlow RB (1974) Correlation between deoxyribonucleic acid excision-repair and life-span in a number of mammalian species. Proc Nat Acad Sci USA 71:2169–2173

    Article  PubMed  CAS  Google Scholar 

  • Haussmann MF, Winkler DW, O'Reilly KM, Huntington CE, Nisbet ICT, Vleck CM (2003) Telomeres shorten more slowly in long-lived birds and mammals than in short-lived ones. Proc R Soc Lond B 270:1387–1392

    Article  CAS  Google Scholar 

  • Izumi T, Hazra TK, Boldogh I, Tomkinson AE, Park MS, Ikeda S, Mitra S (2000) Requirement for human AP endonuclease 1 for repair of 3'-blocking damage at DNA single-strand breaks induced by reactive oxygen species. Carcinogenesis 21:1329–1334

    Article  PubMed  CAS  Google Scholar 

  • Karahalil B, Hogue BA, de Souza-Pinto NC, Bohr VA (2002) Base excision repair capacity in mitochondria and nuclei: tissue-specific variations. FASEB J 16:1895–1902

    Article  PubMed  CAS  Google Scholar 

  • Kisby GE, Kohama SG, Olivas A, Churchwell M, Doerge D, Spangler E, de Cabo R, Ingram DK, Imhof B, Bao G, Kow YW (2010) Effect of caloric restriction on base-excision repair (BER) in the aging rat brain. Exp Gerontol 45:208–216

    Article  PubMed  CAS  Google Scholar 

  • Ku H-H, Brunk UT, Sohal RS (1993) Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radic Biol Med 15:621–627

    Article  PubMed  CAS  Google Scholar 

  • Lambert AJ, Brand MD (2009) Reactive oxygen species production by mitochondria. Methods Mol Biol 554:165–181

    Article  PubMed  CAS  Google Scholar 

  • Lambert AJ, Boysen HM, Buckingham JA, Yang T, Podlutsky A, Austad SN, Kunz TH, Buffenstein R, Brand MD (2007) Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms. Aging Cell 6:607–618

    Article  PubMed  CAS  Google Scholar 

  • Licastro F, Walford RL (1985) Proliferative potential and DNA repair in lymphocytes from short-lived and long-lived strains of mice, relation to aging. Mech Ageing Dev 31:171–186

    Article  PubMed  CAS  Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  PubMed  CAS  Google Scholar 

  • Lorenzini A, Johnson FB, Oliver A, Tresini M, Smith JS, Hdeib M, Sell C, Cristofalo VJ, Stamato TD (2009) Significant correlation of species longevity with DNA double strand break recognition but not with telomere length. Mech Ageing Dev 130:784–792

    Article  PubMed  CAS  Google Scholar 

  • Martins EP, Garland T Jr (1991) Phylogenetic analyses of correlated evolution of continuous characters: a simulation study. Evolution 45:534–557

    Article  Google Scholar 

  • Meira LB, Devaraj S, Kisby GE, Burns DK, Daniel RL, Hammer RE, Grundy S, Jialal I, Friedberg EC (2001) Heterozygosity for the mouse Apex gene results in phenotypes associated with oxidative stress. Cancer Res 61:5552–5557

    PubMed  CAS  Google Scholar 

  • Narciso L, Fortini P, Pajalunga D, Franchitto A, Liu P, Degan P, Frechet M, Demple B, Crescenzi M, Dogliotti E (2007) Terminally differentiated muscle cells are defective in base excision DNA repair and hypersensitive to oxygen injury. Proc Natl Acad Sci USA 104:17010–17015

    Article  PubMed  CAS  Google Scholar 

  • Page MM, Peters CW, Staples JF, Stuart JA (2009) Intracellular antioxidant enzymes are not globally upregulated during hibernation in the major oxidative tissues of the 13-lined ground squirrel Spermophilus tridecemlineatus. Comp Biochem Physiol A Mol Integr Physiol 152:115–122

    Article  PubMed  Google Scholar 

  • Porter RK, Brand MD (1995) Causes of differences in respiration rate of hepatocytes from mammals of different body mass. Am J Physiol Regul Integr Comp Physiol 269:1213–1224

    Google Scholar 

  • Prasad AB, Allard MW, Comparative Sequencing Program NISC, Green ED (2008) Confirming the phylogeny of mammals by use of large comparative sequence data sets. Mol Biol Evol 25:1795–1808

    Article  PubMed  CAS  Google Scholar 

  • Price T (1997) Correlated evolution and independent contrasts. Phil Trans R Soc Lond B 352:519–529

    Article  CAS  Google Scholar 

  • Robertson AB, Klungland A, Rognes T, Leiros I (2009) DNA repair in mammalian cells: base excision repair: the long and short of it. Cell Mol Life Sci 66:981–993

    Article  PubMed  CAS  Google Scholar 

  • Salway KD, Page MM, Faure PA, Burness G, Stuart JA (2011) Enhanced protein repair and recycling are not correlated with longevity in 15 vertebrate endotherm species. Age 33:33–47

    Article  PubMed  CAS  Google Scholar 

  • Seluanov A, Chen Z, Hine C, Sasahara TH, Ribeiro AA, Catania KC, Presgraves DC, Gorbunova V (2007) Telomerase activity coevolves with body mass not lifespan. Aging Cell 6:45–52

    Article  PubMed  CAS  Google Scholar 

  • Slupphaug G, Kavli B, Krokan HE (2003) The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res 531:231–251

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Svensson I, Sohal BH, Brunk UT (1989) Superoxide anion radical production in different animal species. Mech Ageing Dev 49:129–135

    Article  PubMed  CAS  Google Scholar 

  • Sohal RS, Svensson I, Brunk UT (1990) Hydrogen peroxide production by liver mitochondria in different species. Mech Ageing Dev 53:209–215

    Article  PubMed  CAS  Google Scholar 

  • Speakman JR (2005) Correlations between physiology and lifespan—two widely ignored problems with comparative studies. Aging Cell 4:167–175

    Article  PubMed  CAS  Google Scholar 

  • Springer MS, Murphy WJ (2007) Mammalian evolution and biomedicine: new views from phylogeny. Biol Rev 82:375–392

    Article  PubMed  Google Scholar 

  • Srivastava DK, Berg BJ, Prasad R, Molina JT, Beard WA, Tomkinson AE, Wilson SH (1998) Mammalian abasic site base excision repair. Identification of the reaction sequence and rate-determining steps. J Biol Chem 273:21203–21209

    Article  PubMed  CAS  Google Scholar 

  • Stuart JA, Page MM (2010) Plasma IGF-1 is negatively correlated with body mass in a comparison of 36 mammalian species. Mech Ageing Dev 131:591–598

    Article  PubMed  CAS  Google Scholar 

  • Stuart GW, Moffett K, Leader JJ (2002) A comprehensive vertebrate phylogeny using vector representations of protein sequences from whole genomes. Mol Biol Evol 19:554–562

    Article  PubMed  CAS  Google Scholar 

  • Stuart JA, Karahalil B, Hogue BA, Souza-Pinto NC, Bohr VA (2004) Mitochondrial and nuclear DNA base excision repair are affected differently by caloric restriction. FASEB J 18:595–597

    PubMed  CAS  Google Scholar 

  • Wright AF, Jacobson SG, Cideciyan AV, Roman AJ, Shu X, Vlachantoni D, McInnes RR, Riemersma RA (2004) Lifespan and mitochondrial control over neurodegeneration. Nat Genet 36:1153–1158

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

MMP was supported by an Ontario Graduate Scholarship. Work at Brock University was supported by the Natural Sciences and Engineering Research Council, the Canada Foundation for Innovation and an Early Researcher Award from the Ontario Ministry of Research and Innovation to JAS. We thank Gary Burness, Esther Tiedke, and Paul Faure for providing bird, livestock, and bat samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Stuart.

About this article

Cite this article

Page, M.M., Stuart, J.A. Activities of DNA base excision repair enzymes in liver and brain correlate with body mass, but not lifespan. AGE 34, 1195–1209 (2012). https://doi.org/10.1007/s11357-011-9302-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-011-9302-9

Keywords

Navigation