Skip to main content
Log in

Plasma growth hormones, P300 event-related potential and test of variables of attention (TOVA) are important neuroendocrinological predictors of early cognitive decline in a clinical setting: Evidence supported by structural equation modeling (SEM) parameter estimates

  • Published:
AGE Aims and scope Submit manuscript

Abstract

A review of the literature in both animals and humans reveals that changes in sex hormone have often been associated with changes in behavioral and mental abilities. Previously published research from our laboratory, and others, provides strong evidence that P300 (latency) event-related potential (ERP), a marker of neuronal processing speed, is an accurate predictor of early memory impairment in both males and females across a wide age range. It is our hypothesis, given the vast literature on the subject, that coupling growth hormones (insulin-like growth factor-I, (IGF-I) and insulin-like growth factor binding protein 3 (IGF-BP3)), P300 event-related potential and test of variables of attention (TOVA) are important neuroendocrinological predictors of early cognitive decline in a clinical setting. To support this hypothesis, we utilized structural equation modeling (SEM) parameter estimates to determine the relationship between aging and memory, as mediated by growth hormone (GH) levels (indirectly measured through the insulin-like growth factor system), P300 latency and TOVA, putative neurocognitive predictors tested in this study. An SEM was developed hypothesizing a causal directive path, leading from age to memory, mediated by IGF-1 and IGF-BP3, P300 latency (speed), and TOVA decrements. An increase in age was accompanied by a decrease in IGF-1 and IGF-BP3, an increase in P300 latency, a prolongation in TOVA response time, and a decrease in memory functioning. Moreover, independent of age, decreases in IGF-1 and IGF-BP3, were accompanied by increases in P300 latency, and were accompanied by increases in TOVA response time. Finally, increases in P300 latency were accompanied by decreased memory function, both directly and indirectly through mediation of TOVA response time. In summary, this is the first report utilizing SEM to reveal the finding that aging affects memory function negatively through mediation of decreased IGF-1 and IGF-BP3, and increased P300 latency (delayed attention and processing speed).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aleman A, Verhaar HJ, De Haan EH, De Vries WR, Samson MM, Drent ML, Van Der Veen EA, Koppeschaar HP (1999) Insulin-like growth factor-I and cognitive function in healthy older men. Clin Endocrinol Metab 84(2):471–475

    CAS  Google Scholar 

  • Aleman A, de Vries WR, de Haan EG, Verhaar HJ, Samson MM, Koppeschaar HP (2000) Age-sensitive cognitive function, growth hormone and insulin growth factor 1 plasma levels in healthy older men. Neuropsychobiology 41(2):73–78

    PubMed  CAS  Google Scholar 

  • Allen KV, Frier BM, Strachan MW (2004) The relationship between type 2 diabetes and cognitive dysfunction: longitudinal studies and their methodological limitations. Eur J Pharmacol 490(1–3):169–175

    PubMed  CAS  Google Scholar 

  • Almeida OP, Barclay L (2001) Sex hormones and their impact on dementia and depression: a clinical perspective. Expert Opin Pharmacother 2(4):527-535

    Google Scholar 

  • Arai Y, Hirose N, Yamamura K, Shimizu K, Takayama M, Ebihara Y, Osono Y (2001) Serum insulin–like growth factor–1 in centenarians: implications of IGF-1 as a rapid turnover protein. J Gerontol Ser A Biol Sci Med Sci 56(2):M79–M82

    CAS  Google Scholar 

  • Armanini D, Vecchio F, Basso A, Milone FF, Simoncini M, Fiore C, Matterello MJ, Sartorato P, Karbowiak I (2003) Alzheimer’s disease: pathophysiological implications of measurement of plasma cortisol, plasma dehydroepiandrosterone sulfate, and lymphocytic corticosteroid receptors. Endocrine 22(2):113–118

    PubMed  CAS  Google Scholar 

  • Arwert LI, Deijen JB, Drent ML (2005a) The relation between insulin-like growth factor 1 levels and cognition in healthy elderly: A meta-analysis. Growth Horm IGF Res 15:416–422

    PubMed  CAS  Google Scholar 

  • Arwert LI, Deijen JB, Muller M, Drent ML (2005b) Long-term growth hormone treatment preserves GH-induced memory and mood improvement: a 10-year follow-up study in GH-deficient adult men. Horm Behav 47:343–349

    PubMed  CAS  Google Scholar 

  • Arwert LI, Deijen JB, Witlox J, Drent ML (2005c) The influence of growth hormone (GH) substitution on patient-reported outcomes and cognitive functions in GH-deficient patients: A meta analysis. Growth Horm IGF Res 15:47–54

    PubMed  CAS  Google Scholar 

  • Arwert LI, Veltman DJ, Deijen JB, van Dam PS, Delemarre-van deWaal HA, Drent ML (2005d) Growth hormone deficiency and memory functioning in adults visualized by functional magnetic resonance imaging. Neuroendocrinology 82(1):32–40

    PubMed  CAS  Google Scholar 

  • Asthana S, Craft S, Baker LD, Raskind MA, Birnbaum RS, Lofgreen CP, Veith TC, Plymate SR (1999) Cognitive and neuroendocrine response to transdermal estrogen in postmenopausal women with Alzheimer’s disease: results of a placebo-controlled, double blind, pilot study. Psychoneuroendocrinology 24(6):657–677

    PubMed  CAS  Google Scholar 

  • Barrett-Conner E, Goodman-Gruen D (1999) Cognitive function and endogenous sex hormones in older women. J Am Geriatr Soc 47:1289–1293

    Google Scholar 

  • Bates KA, Harvey AR, Carruthers M, Martins RN (2005) Androgens, andropause and neurodegeneration: exploring the link between steroidogenesis, androgens and Alzheimer’s disease. Cell Mol Life Sci 62(3):281–292

    PubMed  CAS  Google Scholar 

  • Baum HB, Katznelson L, Sferman JC, Biller BM, Hayden DL, Schoenfeld DA, Cannistraro KE, Klibanski A (1998) Effects of physiological growth hormone (GH) therapy on cognition and quality of life in patients with adult-onset GH deficiency. J Clin Endocrin Metab 83(9):3184–3189

    CAS  Google Scholar 

  • Baxter RC, Martin JL (1986) Radioimmunoassay of growth hormone-dependent insulin-like growth factor binding protein in human plasma. J Clin Investigation 78:1504–1512

    Article  CAS  Google Scholar 

  • Begleiter H, Porjesz B, Reich T, Edenberg JH, Goate A, Blangero J, Almasy L, Foriud T, Van Eerdewegh P, Polich J, Rohrbaugh J, Kuperman S, Bauer LO, O’Connor SJ, Chorlian DB, Li TK, Connelly PM, Hesselbrock V, Rice JP, Schuckit MA, Cloninger R, Nurnberger J Jr, Crowe R, Bloom FE (1998) Quantitative trait loci analysis of human event-related brain potentials: P3 voltage. Electroenceph Clin Neurophysiol 108:244–250

    PubMed  CAS  Google Scholar 

  • Behl C, Manthey D (2000) Neuroprotective activities of estrogen: an update. J Neurocytology 29(5–6):351–358

    CAS  Google Scholar 

  • Behl C, Skutella T, Lezoualc’h F et al. (1997) Neuroprotection against oxidative stress by estrogens: structure–activity relationship. Mol Pharmacol 51:535–541

    PubMed  CAS  Google Scholar 

  • Bentler PM (1990) Comparative fit indexes in structural models. Psychol Bull 238–246

  • Bentler PM, Bonett DG (1980) Significant tests and goodness of fit in the analysis of covariance structures. Psychol Bull 88:588–600

    Google Scholar 

  • Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Ruso SJ, Graham D, Tsankova NM, Belanos CA, Rios M, Monteggia LM, Self DW, Nestler EJ (2006) Essential role of BNDF in the mesolimbic dopamine PATHway in social defeat stress. Science 311:864–868

    PubMed  CAS  Google Scholar 

  • Bicikova M, Ripova D, Hill M, Jirak R, Havlikova H, Tallova J, Hampl R (2004) Plasma levels of 7-hydroxylated dehydroepiandrosterone (DHEA) metabolites and selected amino-thiols as discriminatory tools of Alzheimer’s disease and vascular dementia. Clin Chem Lab Med 42(5):518–524

    PubMed  CAS  Google Scholar 

  • Binoux M (1999) GH, IGFs, IGF-binding protein-3 and acid-labile subunit: What is the pecking order? Eur J Endocrinol 137:805–809

    Google Scholar 

  • Bollen KA (1989) Statistical equations with latent variables. Wiley, New York

  • Bowen RL, Smith MA, Harris PL, Kubat Z, Martins RN, Castellani RJ, Perry G, Atwood CS (2002) Elevated luteinizing hormone expression colocalized with neuron vulnerable to Alzheimer’s disease pathology. J Neurosci Res 70(3):514–518

    CAS  Google Scholar 

  • Braverman ER, Blum K (1996) Substance use disorder exacerbates brain electrophysiological abnormalities in a psychiatrically-ill population. Clin Electroencephalogr 27(4):25–27

    Google Scholar 

  • Braverman ER, Blum K (2003) P300 (latency) event-related potential: an accurate predictor of memory impairment. Clin Electroencephalogr 34:124–139

    PubMed  Google Scholar 

  • Braverman ER, Chen TJH, Schoolfield J, Mengucci JF, Blum SH, Downs BW, Meshkin B, Blum K (2005) Low plasma levels of sex hormones and human growth factor(s) correlate to cognitive decline as a function of gender. International Journal of Anti-Aging Medicine Annual Meeting, Las Vegas, NV, USA

  • Braverman ER, Chen TJH, Schoolfield J, Martinez-Pons M, Gordon CA, Mengucci JF, Blum SH, Meshkin B, Downs BW, Blum K (2006) Delayed P300 latency correlates with abnormal test of variables of attention (TOVA) in adults and predicts early cognitive decline in a clinical setting. Adv ther 23:582–600

    PubMed  Google Scholar 

  • Breltner JC, Zandi PP (2003) Effects of estrogen plus progestin on risk of dementia. JAMA 28:2651–2662

    Google Scholar 

  • Bremner WJ (2004) Testosterone tied to mental function. But questions about the benefits and risks of testosterone therapy persist. Health News 10(4):14–15

    PubMed  Google Scholar 

  • Brondu NE, Drake BL, Moser DR, Lin M, Boses M, Bar RS (1996) Regulation of endothelial IGF-BP3 synthesis and secretion by IGF-1 and TGF-beta. Growth Regul 6:1–9

    Google Scholar 

  • Brooke AM, Monson JP (2003) Adult growth hormone deficiency. Clin Med 3:15–19

    PubMed  CAS  Google Scholar 

  • Brown RC, Han Z, Cascio C, Papadopoulos V (2003) Oxidative stress-mediated DHEA formation in Alzheimer’s disease pathology. Neurobiol Aging 24(1):57–65

    PubMed  CAS  Google Scholar 

  • Brunso-Bechtold JK, Linville MC, Sonntag WE (2000) Age-related synaptic changes in sensorimotor cortex of the Brown Norway X fischer 344 rat. Brain Res 872:125–133

    PubMed  CAS  Google Scholar 

  • Burkhardt MS, Foster JK, Laws SM, Baker LD, Craft S, Grandy SE, Stucky BG, Clarnette R, Nolan D, Hewson-Bower B, Martins RN (2004) Estrogen replacement therapy may improve memory functioning in the absence of APOE epsilon4. J Alzheimers Dis 6(3):221–228

    PubMed  CAS  Google Scholar 

  • Burkhardt MS, Foster JK, Clarnette RM, Chubb SAP, Bruce DG, Drummond PD, Matins RN, Yeap BB (2006) Interaction between testosterone and apolipoprotein E4 status on cognition in healthy older men. J Clin Endocrinol Metab 91:1168–1172

    PubMed  CAS  Google Scholar 

  • Burman P, Deijen JB (1998) Quality of life and cognitive function in patients with pituitary insufficiency. Psychother Pyschosom 67:154–167

    CAS  Google Scholar 

  • Carro E, Trejo JL, Gomez-Isla T, LeRoith D, Torres-Aleman I (2002) Serum insulin-like growth factor 1 regulates brain amyloid-beta levels. Nat Med 12:1390–1397

    Google Scholar 

  • Casadesus G, Atwood CS, Zhu X, Hartzler AW, Webber KM, Perry G, Atwood CS, Zhu X, Hartzler AW, Webber KM, Perry G, Bowen RL, Smith MA (2005) Evidence for the role of gonadotropin hormones in the development of Alzheimer’s disease. Cell Mol Life Sci 62(3):293–298

    PubMed  CAS  Google Scholar 

  • Casadesus G, Webber KM, Atwood CS, Pappolla MA, Perry G, Bowen RL, Smith MA (2006) Luteinizing hormone modulates cognition and amyloid-beta deposition in Alzheimer APP transgenic mice. Biochim Biophysica Acta 1762(4):447-52

    Google Scholar 

  • Cauley JA, Gutal JP, Kuller LH, LeDonne D, Powell JG (1989) The epidemiology of serum sex hormones on postmenopausal women. Am J Epidemiol 129:1120–1131

    PubMed  CAS  Google Scholar 

  • Cherrier MM et al. (2005) Testosterone improves spatial memory in men with Alzheimer disease and mild cognitive impairment. Neurology 64(12):2063–2068

    PubMed  CAS  Google Scholar 

  • Cholerton B, Gleason CE, Baker LD, Asthana SW (2002) Estrogen and Alzheimer’s disease: The story so far. Drugs and Aging 19(6):405–427

    PubMed  CAS  Google Scholar 

  • Comings DE, Dietz G, Johnson JP, MacMurray JP (1999) Association of the enkephalinase gene with low amplitude P300 waves. Neuroreport 10(11):2283–2285

    PubMed  CAS  Google Scholar 

  • Compton J, van Amelsvoort T, Murphy D (2001) HRT and its effect on normal ageing of the brain and dementia. British J Clin Pharmacol 52(6):647–653

    CAS  Google Scholar 

  • Cyr M, Calon F, Morissette M, Grandbois M, Di Paolo T, Callier S (2000) Drugs with estrogen-like potency and brain activity: potential therapeutic application for the CNS. Cur Pharma Des 6(12):1287–1312

    CAS  Google Scholar 

  • De Bruin VM, Vieira MC, Rocha MN, Viana GS (2002) Cortisol and dehydroepiandrosterone sulfate plasma levels and their relationship to aging, cognitive function, and dementia. Brain Cogn 50(2):316–323

    PubMed  Google Scholar 

  • Demlin RH (2005) The role of anabolic hormones for wound healing in catabolic states. J Burns Wounds 4:2

    Google Scholar 

  • Donahue AN, Aschner M, Lash LH, Syversen T, Sonntag WE (2006) Growth hormone administration to aged animals reduces disulfide glutathione levels in hippocampus. Mech Aging Dev 127:57–63

    PubMed  CAS  Google Scholar 

  • Dumas J, Hancur-Bucci C, Naylor M, Sites C, Newhouse P (2006) Estrogen treatment effects on anticholinergic-induced cognitive dysfunction in normal postmenopausal women. Neuropsychopharmacology [Epub ahead of Print]

  • Ellwart T, Rinck M, Becker ES (2003) Selective memory and memory deficits in depressed inpatients. Depress Anxiety 17:197–206

    PubMed  Google Scholar 

  • Falter CM, Arroyo M, Davis GJ (2006) Testosterone: Activation or organization of spatial cognition? Biol Psych 73(2):132-140

    Google Scholar 

  • Gallinat J, Bajbouj M, Sander T, Schlattmann P, Xu K, Ferro EF, Goldman D, Winterer G (2003) Association of the G1947A COMT (Val(108/158)Met) gene polymorphism with prefrontal P300 during information processing. Biol Psych 54(1):40–48

    CAS  Google Scholar 

  • Gleason CE, Cholerton B, Carlsson CM, Johnson SC, Asthana S (2005) Neuroprotective effects of female sex steroids in humans: current controversies and future directions. Cell Mol Sci 62(3):299–312

    CAS  Google Scholar 

  • Godbolt AK et al. (2004) The natural history of Alzheimer disease: A longitudinal presymptomatic and symptomatic study of a familial cohort. Arch Neurol 61:1743–1748

    PubMed  Google Scholar 

  • Gregory CW, Bowen RL (2005) Novel therapeutic strategies for Alzheimer’s disease based on the forgotten reproductive hormones. Cell Mol Life Sci 62(3):313–319

    PubMed  CAS  Google Scholar 

  • Grill JD, Sonntag WE, Riddle DR (2005) Dendritic stability in a model of adult-onset IGF-1 deficiency. Growth Horm IGF Res 15:337–348

    PubMed  CAS  Google Scholar 

  • Heijer den T, Geerkings MI, Hofman A, de Jong FH, Launer LJ, Huibert AP, Pols MD, Breteler MM (2003) Higher estrogen levels are not associated with larger hippocampi and better memory performance. Arch Neurology 60:213–220

    Google Scholar 

  • Henderson VW, Hogervorst E (2004) Testosterone and Alzheimer’s disease: is it men’s turn now? Neurology 62(2):170–171

    PubMed  Google Scholar 

  • Herrmann N, Lanctot KL, Eryavec G, Van Reekum R, Khan LR (2004) Growth hormone response to clonidine predicts aggression in Alzheimer’s disease. Psychoneuroendocrinology 29(9):1192–1197

    PubMed  CAS  Google Scholar 

  • Hill SY, Locke J, Zezza N, Kaplan B, Neiswanger K, Steinhauer SR, Wipprecht G, Xu J (1998) Genetic association between reduced P300 amplitude and the DRD2 dopamine receptor A1 allele in children at high risk for alcoholism. Biol Psych 43(1):40–51

    CAS  Google Scholar 

  • Hogervorst E, Bandelow S, Combrink M, Smith AD (2004) Low free testosterone is an independent risk factor for Alzheimer’s disease. Exp Gerontol 39(11–12):1633–1639

    PubMed  CAS  Google Scholar 

  • Honjo H, Iwasa K, Kawata M, Fushiki S, Hosoda T, Tatsumi H, Oida N, Mihara M, Hirasugi Y, Yamamoto H, Kikuchi N, Kitawaki J (2005) Progestins and estrogens and Alzheimer’s disease. Steroid Biochem Mol Biol 93(2–5):305–308

    CAS  Google Scholar 

  • Hoskin EK, Tang MX, Manly JJ, Mayeux R (2004) Elevated sex-hormone binding globulin in elderly women with Alzheimer’s disease. Neurobiol Aging 25(2):141–147

    PubMed  CAS  Google Scholar 

  • Huppert Fa, Van Niekerk JK, Herbert J (2000) Dehydroepiandrosterone (DHEA) supplementation for cognition and well-being. Cochrane Database of Systemic Review 2:CD000304

    Google Scholar 

  • Johnson JP, Muhleman D, MacMurray J, Gade R, Verde R, Ask M, Kelley J, Comings DE (1997) Association between the cannabinoid receptor gene (CNR1) and the P300 event-related potential. Mol Psych 169–171

  • Kalmijn S, Janssen JA, Pols HA, Lamberts SW, Breteler MM (2000a) A prospective study on circulating insulin-like growth factor-1 (IGF-1), IGF-binding proteins, and cognitive function in the elderly. J Clin Endocrin Metab 85(12):4551–4555

    CAS  Google Scholar 

  • Kalmijn S, Mehta KM, Pols HA, Horman A, Drexhage HA, Breteler MM (2000b) Subclinical hyperthyroidism and the risk of dementia. The Rotterdam study. Clin Endocrinol (Oxf) 53(6):733–737

    CAS  Google Scholar 

  • Kappeler L, Epelbaum J (2005) Biological aspects of longevity and ageing. Rev Epidemiol Sante Publique 53:235–241

    PubMed  CAS  Google Scholar 

  • Kawas C, Resnick S, Morrison A et al. (1997) A prospective study of estrogen replacement therapy and the risk of developing Alzheimer’s disease. The Baltimore Longitudinal Study of Aging. Neurology 48:1517–1521

    PubMed  CAS  Google Scholar 

  • Kawas CH, Corrada MM, Brookmeyer R, Morrison A, Resnick SM, Zonderman AB, Arenberg D (2003) Visual memory predicts Alzheimer’s disease more than a decade before diagnosis. Neurology 60(7):1089–1093

    PubMed  CAS  Google Scholar 

  • Kessing LV, Andersen PK (2004) Does the risk of developing dementia increase with the number of episodes in patients with depressive disorder and in patients with bipolar disorder? J Neurol Neurosurg Psychiatry 75(12):1662–1666

    PubMed  CAS  Google Scholar 

  • Khachaturian AS, Corcoran CD, Mayer LS, Zandi PP, Breitner JCS (2004) Apolipoprotein E 4 count affects age at onset of Alzheimer disease, but not lifetime susceptibility. Arch Gen Psychiatry 61:518–524

    PubMed  CAS  Google Scholar 

  • Knopman D, Henderson VW (2003) DHEA for Alzheimer’s disease: a modest showing by a superhormone. Neurology 60(7):1060–1061

    PubMed  Google Scholar 

  • Kolsch H, Rao ML (2000) Neuroprotective effects of estradiol–17 beta: implications for psychiatric disorders. Arch Women’s Mental Health 5(3):105–110

    Google Scholar 

  • Langa KM, Norman L, Foster NL, Larson EB (2004) Mixed dementia: emerging concepts and therapeutic implications. JAMA 292(23):2901–2908

    PubMed  CAS  Google Scholar 

  • LeBlance E, Janowsky J, Chan BKS, Nelson HD (2001) Hormone replacement therapy and cognition: systematic review and meta-analysis. JAMA 285:1489–1499

    Google Scholar 

  • Leblhuber F, Haller H, Steiner K, Fuchs D (2004) DHEA treatment of Alzheimer’s disease: A randomized, double-blind, placebo controlled trial. Neurology 62(6):1030

    PubMed  Google Scholar 

  • Leor J, Rozen L, Zuloff-Shani A, Feinberg MS, Amsalem Y, Barbash IM, Kachel E, Holbova R, Mardor Y, Daniels D, Ocherashvilli A, Orenstein A, Danon D (2006) Ex vivo activated human macrophages improve healing, remodeling, and function of the infarcted heart. Circulation 114(1Supple):94–100

    Google Scholar 

  • Levine AJ, Battista M (2004) Estrogen replacement therapy: effects on the cognitive functioning and clinical course of women with Alzheimer’s disease. Arch Clin Neuropsychol 19(6):769–778

    PubMed  Google Scholar 

  • Li JX, Liu XS, Tang H, Zhou X, Huang YS (2006) Influence of some topical antibiotics and FGF2, EGF and rhGH on the biological characteristics of fibroblasts in vitro. Zhonghua Shao Shang Za Zhi 1:33–37

    Google Scholar 

  • Lichtenwalner RJ, Forbes ME, Bennett SA, Lynch CD, Sonntag WE, Riddle DR (2001) Intracerebroventricular infusion of insulin-like growth factor-I ameliorates the age-related decline in hippocampal neurogenesis. Neuroscience 107(4):603–613

    PubMed  CAS  Google Scholar 

  • Lim D, Fisher L, Dharamarajan A, Martins RN (2003) Can testosterone replacement decrease the memory problem of old age? Med Hypotheses 60:893–896

    PubMed  CAS  Google Scholar 

  • Lobie PE, Zhu T, Graichen R, Goh EL (2000) Growth hormone, insulin-like growth factor 1 and the CNS: localization, function and mechanism of action. Growth Horm IGF Res 10(suppl)B:S51–S56

    PubMed  Google Scholar 

  • Loehlin JC (1992) Latent variable models: An introduction to factor, path, and structural analysis, 187. Lawrence Erlbaum, Hillsdale, NJ

    Google Scholar 

  • Long JS (1983) Confirmatory factor analysis: A preface to LISREL. Sage, Thousand Oaks, CA

    Google Scholar 

  • Lynch CD, Lyons D, Khan A, Bennett SA, Sonntag WE (2001) Insulin-like growth factor-1 selectively increases glucose utilization in brains of aged animals. Endocrinology 142:506–509

    PubMed  CAS  Google Scholar 

  • Mahajan T, Crown A, Checkley S, Farmer A, Lightman S (2004) A typical depression in growth hormone deficient adults, and the beneficial effects of growth hormone treatment on depression and quality of life. Eur J Endcrinol 151:235–332

    Google Scholar 

  • Mangone CA (2004) Clinical heterogeneity of Alzheimer’s disease. Different clinical profiles can predict the progression rate. Rev Neurol 38(7):675–81

    PubMed  CAS  Google Scholar 

  • Manor I, Corbex M, Eisenberg J, Gritsenkso I, Bachner-Melman R, Tyano S, Ebstein RP (2004) Association of the dopamine D5 receptor with attention deficit hyperactivity disorder (ADHD) and scores on a continuous performance test (TOVA). Am J Med Genet B Neuropsychiatr Genet 127(1):73–77

    PubMed  Google Scholar 

  • Maruyama GM (1997) Basics of structural equation modeling. Sage, Thousand Oaks, CA

    Google Scholar 

  • Meethal SV, Smith MA, Bowen RL, Atwood CS (2003) The gonadotropin connection in Alzheimer's disease. Endocrinology 26:317–326

    Google Scholar 

  • Messier C, Awad N, Gagnon M (2004) The relationship between atherosclerosis, heart disease, type 2 diabetes and dementia. Neurol Res 26(5):567–572

    PubMed  Google Scholar 

  • Modrego PJ, Ferrandez J (2004) Depression in patients with mild cognitive impairment increases the risk of developing dementia of Alzheimer type: a prospective cohort study. Arch Neurol 61(8):1290–1293

    PubMed  Google Scholar 

  • Moffat SD, Zonderman AB, Metter EJ, Kawas C, Blackman MR, Harman SM, Resnick SM (2004) Free testosterone and risk for Alzheimer disease in older men. Neurology 62(2):188–193

    PubMed  CAS  Google Scholar 

  • Morley JE (2003) Hormones and the aging process. J Amer Ger Soc 57:5333–5337

    Google Scholar 

  • Morely JE, van den Berg L (eds) (2000) Endocrinology of aging. The Humana Press, Totowa, NJ, USA

  • Mulert C, Juckel G, Giegling I, Pogarell O, Leicht G, Karch S, Mavrogiorgou P, Moller HJ, Hegerl U, Rujescu D (2006) A Ser9Gly polymorphism in the dopamine D3 receptor gene (DRD3) and event-related P300 potentials. Neuropsychopharmacology 31(6):1335-1344

    Google Scholar 

  • Mulnard RA, Citman CW, Kawas C et al. (2000) For the Alzheimer’s disease cooperative Study. Estrogen replacement therapy for the treatment of mild to moderate Alzheimer disease: a randomized controlled trial. JAMA 283:1007–1015

    PubMed  CAS  Google Scholar 

  • Murialdo G, Barreca A, Nobili F, Rollero A, Timossi, G, Gianelli MV, Copello, F, Rodriquez G, Polleri A (2001) Relationships between cortisol, dehydroepiandrosterone sulphate and insulin-like growth factor-1 system in dementia. J Endocrinol Invest 24:139–146

    PubMed  CAS  Google Scholar 

  • Nacher V (2000) Genetic association between the reduced amplitude of the P300 and the allele A1 of the gene which codifies the D2 dopamine receptor (DRD2) as possible biological markers for alcoholism. Rev Neurol 30(8):756–763

    PubMed  CAS  Google Scholar 

  • Norbury R, Cutter WJ, Compton J, Robertson DM, Craig M, Whitehead KM, Murphy DG (2003) The neuroprotective effects of estrogen on the aging brain. Exp Gerontol 38:109–117

    PubMed  CAS  Google Scholar 

  • Okereke OL, Kang JH, Ma J, Gazizno JM, Grodstein F (2006) Midlife plasma insulin-like growth factor 1 and cognitive function in older men. J Clin Endocrinilogy Metab 91:4306–4312

    CAS  Google Scholar 

  • Okun MS, DeLong MRJ, Hanfelt J, Gearing M, Levey A (2004) Plasma testosterone levels in Alzheimer’s and Parkinson diseases. Neurology 62(3):411–413

    PubMed  CAS  Google Scholar 

  • Pandian R, Nakamoto JM (2004) Rational use of the laboratory for childhood and adult growth hormone deficiency. Clinical Lab Med 24:14–174

    Google Scholar 

  • Papadakis MA, Grady D, Black D, Tierney MJ, Gooding GA, Schambelan M, Grunfeld C (2005) Relationship between serum insulin-like growth factor-1 levels and Alzheimer's disease and vascular dementia. J Am Geriatr Soc 53(10):1748–1753

    Article  Google Scholar 

  • Pavel ME, Lohmann T, Hahn EG, Hoffman M (2003) Impact of growth hormone on central nervous activity, vigilance, and tiredness after short-term therapy in growth hormone in deficient adults. Horm Metab Res 35(2):114–119

    PubMed  CAS  Google Scholar 

  • Pennanen C, Laakso MP, Kivipelto M, Ramberg J, Soininen H (2004) Serum testosterone levels in males with Alzheimer’s disease. J Neuroendocrinol 16:93–4

    Google Scholar 

  • Petruzzi E, Pinzani P, Orlando C, Poggesi M, Monami M, Pazzagli M, Masotti G (2002) Healthy centenarian as living model of “successful aging”: A study on fasting glycemia, C-peptide, dehydroepiandrosterone sulphate (DHEAS) and insulin–like growth factor (IGF-1). Arch Gerontol Geriatr Suppl 8:273–278

    PubMed  CAS  Google Scholar 

  • Pike CJ (2001) Testosterone attenuates beta-amyloid toxicity in cultured hippocampal neurons. Brain Res 919:160–165

    PubMed  CAS  Google Scholar 

  • Pinkerton JV, Henderson VW (2005) Estrogen and cognition, with a focus on Alzheimer’s disease. Semin Reprod Med 23(2):172–179

    PubMed  CAS  Google Scholar 

  • Polich J, Bloom FE (1999) P300, alcoholism heritability, stimulus modality. Alcohol 17:149–156

    PubMed  CAS  Google Scholar 

  • Polleri A, Gianelli MV, Murialdo G (2002) Dementia: a neuroendocrine perspective. Endocrinol Invest 25(1):73–83

    CAS  Google Scholar 

  • Ramsey MM, Weiner JL, Moore TP, Carter CS, Sonntag WE (2004) Growth hormone treatment attenuates age-related changes in hippocampal short-term plasticity and spatial learning. Neuroscience 129(1):119–127

    PubMed  CAS  Google Scholar 

  • Rasmuson S, Nasman B, Carlstrom K, Olsson T (2002) Increased levels of adrenocortical and gonadal hormones in mild to moderate Alzheimer’s disease. Dement Geriatr Cogn Disord 13(2):74–79

    PubMed  CAS  Google Scholar 

  • Ravaglia G, Forti P, Maiolo F, Sacchetti L, Nativio V, Scali CR, Mariani E, Zanardi V, Stefanini A, Macini PL (2002) Dehydroepiandrosterone-sulfate serum levels and common age-related disease: results from a cross-sectional Italian study of a general elderly population. Exp Gerontol 37(5):701–712

    PubMed  CAS  Google Scholar 

  • Raynaud-Simon A, Lafont S, Berr C, Dartigues JF, Baulieu EE, Le Bouc Y (2000) Plasma insulin-like growth factor 1 levels in the elderly: relation to plasma dehydroepiandrosterone sulfate levels, nutritional status, health and mortality. Gerontology 47(4):198–206

    Google Scholar 

  • Rollero A, Murialdo G, Fonzi S, Garrone S, Gianelli MV, Gazzerro E, Barreca A, Polleri A (1998) Relationship between cognitive function, growth hormone and insulin-like growth factor I plasma levels in aged subjects. Neuropsychobiology 38(2):73–79

    PubMed  CAS  Google Scholar 

  • Rosario E, Chang L, Stanczyk FZ, Pike CJ (2004) Age related testosterone depletion and the development of Alzheimer’s disease. JAMA 292(12):1431–1432

    PubMed  CAS  Google Scholar 

  • Sano M (2000) Understanding the role of estrogen on cognition and dementia. J Neural Trans 59:223–229 (Suppl)

    CAS  Google Scholar 

  • Sherwin BB (2003) Estrogen and cognitive functioning in women. Endocrine Reviews 24(2):133–151

    PubMed  CAS  Google Scholar 

  • Shi L, Linville MC, Tucker EW, Sonntag WE, Brunso-Bechtold JK (2005) Differential effects of aging and insulin-like growth factor-1 on synapses in CA1 of rat hippocampus. Cereb Cortex 15(5):571–577

    PubMed  Google Scholar 

  • Shin EJ, Jhoo JH, Nabeshima T, Jhoo WK, Kwon MS, Lim YK, Chae JS, Jung ME, Park SJ, Jang KJ, Kim HC (2005) Growth hormone releaser attenuates beta-amyloid (1–42)–induced memory impairment in mice. J Pharmacol Sci 99:117–120

    PubMed  CAS  Google Scholar 

  • Shively CA, Bethea CL (2004) Cognition, mood disorders, and sex hormones. ILAR 45:189–199

    CAS  Google Scholar 

  • Simpson AH, Mills L, Noble B (2006) The role of growth factors and related agents in accelerating fracture healing. J Bone Joint Sug Br 6:701–706

    Google Scholar 

  • Smith JD, Levin-Allerhand JA (2003) Potential use of estrogen-like drugs for the prevention of Alzheimer’s disease. J Mol Neurosci 20:277–781

    PubMed  CAS  Google Scholar 

  • Sodergard R, Backstrom T, Shanbhag V, Carstensen H (1982) Calculation of free and bound fractions of testosterone and estradiol-17 beta to human plasma proteins at body temperature. J Steroid Biochem 16:801–810

    PubMed  CAS  Google Scholar 

  • Sonntag WE, Lynch C, Thornton P, Khan A, Bennett S, Ingram R (2000) The effects of growth hormone and IGF-1 deficiency on cerebrovascular and brain ageing. J Anat 197(4):575–585

    PubMed  CAS  Google Scholar 

  • Sonntag WE, Lynch CD, Cefalu WT, Ingram RL, Bennett SA, Thornton PL, Khan AS (2001) Pleiotropic effects of growth hormone and insulin-like growth factor (IGF)-1 on biological aging: inferences from moderate caloric-restricted animals. Neuroscience 107:603–613

    PubMed  Google Scholar 

  • Sonntag WE, Carter CS, Ikeno Y, Ekenstedt K, Carlson CS, Loeser RF, Chakrabarty S, Lee S, Bennett C, Ingram R, Moore T, Ramsey M (2005a) Adult-onset growth hormone and insulin-like growth factor I deficiency reduces neoplastic disease, modifies age-related pathology, and increases life span. Endocrinology 146(7):2920–2932

    PubMed  CAS  Google Scholar 

  • Sonntag WE, Ramsey M, Carter CS (2005b) Growth hormone and insulin-like growth factor-1 (IGF-1) and their influence on cognitive aging. Ageing Res Rev 4:195–212

    PubMed  CAS  Google Scholar 

  • Tan RS, Pu SJ (2001) The andropause and memory loss: is there a link between androgen decline and dementia in the aging male? Asian J Andrology 3(3):169–174

    CAS  Google Scholar 

  • Tan RS, Pu SJ (2003) A pilot study on the effects of testosterone in hypogonadal aging male patients with Alzheimer’s disease. Aging Male 6:13–17

    PubMed  CAS  Google Scholar 

  • Tang MX, Jacibs D, Stern Y et al. (1996) Effect of estrogen during menopause on risk and age at onset of Alzheimer’s disease. Lancet 34:429–432

    Google Scholar 

  • Thornton PL, Ingram RL, Sonntag WE (2000) Chronic [D-Ala2]-growth hormone-releasing hormone administration attenuates age-related deficits in spatial memory. J Gerontol A Biol Sci Med Sci 55:B106–B112

    PubMed  CAS  Google Scholar 

  • Tilvis RS, Kahonen-Vare MH, Jolkkonen J, Valvanne J, Pitkala KH, Strandberg TE (2004) Predictors of cognitive decline and morality of aged people over a 10-year period. J Gerontol A Biol Sci 59(3):268–274

    Google Scholar 

  • Tschanz JT, Treiber K, Norton MC, Welsh-Bohmer KA, Toone L, Zandi PP, Szekely CA, Lyketsos C, Breitner JC, Cache County Study Group (2005) A population study of Alzheimer’s disease: findings from the Cache County study on memory, health and aging. Care Manag J 6(2):107–114

    PubMed  Google Scholar 

  • Vallee M, Mayo W, LeMoal M (2001) Role of pregnenolone, dehydroepiandrosterone and their sulfate esters on learning and memory in cognitive aging. Brain Res Rev 37:301–312

    PubMed  CAS  Google Scholar 

  • van Dam PS (2005) Neurocognitive function in adults with growth hormone deficiency. Horm Res 64(Suppl 3):109–114

    PubMed  Google Scholar 

  • van Dam PS, Aleman A. (2004) Insulin-like growth factor-I, cognition and brain aging. Eur Pharmacol 490(1–3):87–95

    Google Scholar 

  • van Dam PS, de Winter CF, de Vries R, van der Grond J, Drent Ml, Lijffijt M, Kenemans JL, Aleman A, de Haan EH, Koppeshaar HP (2005) Childhood–onset growth hormone deficiency, cognitive function and brain N-acetylaspartate. Psychoneuroendocrinology 30(4):357–363

    PubMed  Google Scholar 

  • van den Beid AW, de Jong FH, Grobbee DE, Pois HAP, Lamberts SW (2000) Measures of bioavailable serum testosterone and estradiol and their relationships with muscle strength, bone density, and body composition in elderly men. J Clin Endocrinol Metab 85:3276–3282

    Google Scholar 

  • Wang PN, Liao SQ, Liu RD et al. (2000) Effects of estrogen on cognition, mood and cerebral blood flow in AD: a controlled study. Neurology 54:2061–2066

    PubMed  CAS  Google Scholar 

  • Watanabe T, Yamamoto H, Idei T, Iguchi T, Katagiri T (2004) Influence of insulin-like growth factor-1 and hepatocyte growth factor on carotid atherosclerosis and cognitive function in the elderly. Dement Geriatr Cogn Disord 18(1):67–74

    PubMed  CAS  Google Scholar 

  • Weill-Engerer S, David JP, Sazdovitch V, Liere P, Eychenne B, Pianos A, Schumacher M, Delacourte A, Baulieu EE, Akwa Y (2002) Neurosteroid quantification in human brain regions: comparison between Alzheimer’s and nondemented patients. J Chin Endocrinol Metab 87(11):5138–5143

    CAS  Google Scholar 

  • Whitmer RA, Sidney S, Selby J, Johnston SC, Yaffe K (2005) Midlife cardiovascular risk factors and risk of dementia in late life. Neurology 64(2):277–281

    PubMed  CAS  Google Scholar 

  • Wolkowitz OM, Kramer JH, Reus VI (2003) DHEA treatment of Alzheimer’s disease: a randomized double-blind, placebo-controlled trial. Neurology 6:1071–1076

    Google Scholar 

  • Yai JL, Rasmuson S, Andrew R, Graham M, Noble J, Olsson T, Fuchs E, Lathe R, Seckl JR (2003) Dehydroepiandrosterone 7-hydroxylase CYP7B: predominant expression in primate hippocampus and reduced expressions in Alzheimer’s disease. Neuroscience 121(2):307–314

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Salugen, Inc., San Diego, California, PATH Research Foundation, New York, NY, and Synaptamine, Inc., San Antonio, TX for their financial support. William Sonntag is the recipient of grant # P01 AG11370. We want to thank both Arpana Rayannavar and Neeta Makhija for their contributions to the manuscript and the entire PATH staff. A special acknowledgement is provided for the generosity of Rein Narma.

Conflict of interest statement

We declare that we have no conflict of interest. Eric R. Braveman MD, is the director of PATH Clinics where he utilizes both the P300 and TOVA as diagnostics, and Kenneth Blum, PhD is the scientific director of the PATH Research Foundation and is a paid consultant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Blum.

About this article

Cite this article

Braverman, E.R., Chen, T.J.H., Prihoda, T.J. et al. Plasma growth hormones, P300 event-related potential and test of variables of attention (TOVA) are important neuroendocrinological predictors of early cognitive decline in a clinical setting: Evidence supported by structural equation modeling (SEM) parameter estimates. AGE 29, 55–67 (2007). https://doi.org/10.1007/s11357-007-9030-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-007-9030-3

Keywords

Navigation