Skip to main content
Log in

Stem cell aging in the Drosophila ovary

  • Research article
  • Published:
AGE Aims and scope Submit manuscript

Abstract

Accumulating evidence suggests that with time human stem cells may become defective or depleted, thereby contributing to aging and aging-related diseases. Drosophila provides a convenient model system in which to study stem cell aging. The adult Drosophila ovary contains two types of stem cells: the germ-line stem cells give rise to the oocyte and its supporting nurse cells, while the somatic stem cells give rise to the follicular epithelium—a highly differentiated tissue that surrounds each oocyte as it develops. Genetic and transgenic analyses have identified several conserved signaling pathways that function in the ovary to regulate stem cell maintenance, division and differentiation, including the wingless, hedgehog, JAK/STAT, insulin and TGF-β pathways. During Drosophila aging the division of the stem cells decreases dramatically, coincident with reduced egg production. It is unknown if this reproductive senescence is due to a defect in the stem cells themselves, or due to the lack of signals normally sent to the stem cells from elsewhere in the animal, such as from the central nervous system or the stem cell niche. Methods are being developed to genetically mark stem cells in adult Drosophila and measure their survival, division rate and function during aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  • Akiyama T (2002) Mutations of stonewall disrupt the maintenance of female germline stem cells in Drosophila melanogaster. Dev Growth Differ 44(2): 97–102

    Article  CAS  PubMed  Google Scholar 

  • Arking R and Dudas SP (1989) Review of genetic investigations into the aging process of Drosophila. JAGS 37: 757–773

    CAS  Google Scholar 

  • Baker GT, Jacobsen M and Mokrynski G (1989) Aging in Drosophila. In: Crisotfalo V (ed) Cell Biology Handbook in Aging, pp. 511–578. CRC, Boca Raton

    Google Scholar 

  • Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW and Yaswen P et al. (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22(16): 4212–4222

    Article  CAS  PubMed  Google Scholar 

  • Bhat KM (1999) The posterior determinant gene nanos is required for the maintenance of the adult germline stem cells during Drosophila oogenesis. Genetics 151(4): 1479–1492

    CAS  PubMed  Google Scholar 

  • Biessmann H and Mason JM (1988) Progressive loss of DNA sequences from terminal chromosome deficiencies in Drosophila melanogaster. EMBO J 7(4): 1081–1086

    CAS  PubMed  Google Scholar 

  • Biessmann H, Mason JM, Ferry K, d'Hulst M, Valgeirsdottir K and Traverse KL et al. (1990) Addition of telomere-associated HeT DNA sequences ‘heals’ broken chromosome ends in Drosophila. Cell 61(4): 663–673

    Article  CAS  PubMed  Google Scholar 

  • Biessmann H, Valgeirsdottir K, Lofsky A, Chin C, Ginther B and Levis RW et al. (1992) HeT-A, a transposable element specifically involved in “healing” broken chromosome ends in Drosophila melanogaster. Mol Cell Biol 12(9): 3910–3918

    CAS  PubMed  Google Scholar 

  • Blackburn EH (2000) The end of the (DNA) line. Nat Struct Biol 7(10): 847–850

    Article  CAS  PubMed  Google Scholar 

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP and Morin GB et al. (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279(5349): 349–352

    Article  CAS  PubMed  Google Scholar 

  • Brummel TJ, Twombly V, Marques G, Wrana JL, Newfeld SJ and Attisano L et al. (1994) Characterization and relationship of Dpp receptors encoded by the saxophone and thick veins genes in Drosophila. Cell 78(2): 251–261

    Article  CAS  PubMed  Google Scholar 

  • Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120(4): 513–522

    Article  CAS  PubMed  Google Scholar 

  • Campisi J, Kim SH, Lim CS and Rubio M (2001) Cellular senescence, cancer and aging: the telomere connection. Exp Gerontol 36(10): 1619–1637

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth B (1994) Evolution in Age Structured Populations. 2nd ed. Cambridge University Press, Cambridge

    Google Scholar 

  • Chen D and McKearin D (2003a) Dpp signaling silences bam transcription directly to establish asymmetric divisions of germline stem cells. Curr Biol 13(20): 1786–1791

    Article  CAS  PubMed  Google Scholar 

  • Chen D and McKearin DM (2003b) A discrete transcriptional silencer in the bam gene determines asymmetric division of the Drosophila germline stem cell. Development 130(6): 1159–1170

    Article  CAS  PubMed  Google Scholar 

  • Chen QM, Bartholomew JC, Campisi J, Acosta M, Reagan JD and Ames BN (1998) Molecular analysis of H2O2-induced senescent-like growth arrest in normal human fibroblasts: p53 and Rb control G1 arrest but not cell replication. Biochem J 332(Pt 1): 43–50

    CAS  PubMed  Google Scholar 

  • Cox DN, Chao A, Baker J, Chang L, Qiao D and Lin H (1998) A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev 12(23): 3715–3727

    CAS  PubMed  Google Scholar 

  • Cox DN, Chao A and Lin H (2000) Piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development 127(3): 503–514

    CAS  PubMed  Google Scholar 

  • Cristofalo VJ and Pignolo RJ (1993) Replicative senescence of human fibroblast-like cells in culture. Physiol Rev 73(3): 617–638

    CAS  PubMed  Google Scholar 

  • Das P, Maduzia LL, Wang H, Finelli AL, Cho SH and Smith MM et al. (1998) The Drosophila gene Medea demonstrates the requirement for different classes of Smads in dpp signaling. Development 125(8): 1519–1528

    CAS  PubMed  Google Scholar 

  • de Cuevas M, Lee JK and Spradling AC (1996)Alpha-spectrin is required for germline cell division and differentiation in the Drosophila ovary. Development 122(12): 3959–3968

    PubMed  Google Scholar 

  • de Cuevas M, Lilly MA and Spradling AC (1997) Germline cyst formation in Drosophila. Annu Rev Genet 31: 405–428

    Article  PubMed  Google Scholar 

  • Deng W and Lin H (1997) Spectrosomes and fusomes anchor mitotic spindles during asymmetric germ cell divisions and facilitate the formation of a polarized microtubule array for oocyte specification in Drosophila. Dev Biol 189(1): 79–94

    Article  CAS  PubMed  Google Scholar 

  • Deng W, Lin H (2001) Asymmetric germ cell division and oocyte determination during Drosophila oogenesis. Int Rev Cytol 203: 93–138

    CAS  PubMed  Google Scholar 

  • DePinho RA and Polyak K (2004) Cancer chromosomes in crisis. Nat Genet 36(9): 932–934

    Article  CAS  PubMed  Google Scholar 

  • Di Leonardo A, Linke SP, Clarkin K and Wahl GM (1994) DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev 8(21): 2540–2551

    PubMed  Google Scholar 

  • Dimri GP, Itahana K, Acosta M and Campisi J (2000) Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumor suppressor. Mol Cell Biol 20(1): 273–285

    CAS  PubMed  Google Scholar 

  • Drummond-Barbosa D and Spradling AC (2001) Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev Biol 231(1): 265–278

    Article  CAS  PubMed  Google Scholar 

  • Drummond-Barbosa D and Spradling AC (2004) Alpha-endosulfine, a potential regulator of insulin secretion, is required for adult tissue growth control in Drosophila. Dev Biol 266(2): 310–321

    Article  CAS  PubMed  Google Scholar 

  • Effros RB (2004) From Hayflick to Walford: the role of T cell replicative senescence in human aging. Exp Gerontol 39(6): 885–890

    Article  CAS  PubMed  Google Scholar 

  • Forbes A and Lehmann R (1998) Nanos and Pumilio have critical roles in the development and function of Drosophila germline stem cells. Development 125(4): 679–690

    CAS  PubMed  Google Scholar 

  • Forbes AJ, Spradling AC, Ingham PW and Lin H (1996a) The role of segment polarity genes during early oogenesis in Drosophila. Development 122(10): 3283–3294

    CAS  PubMed  Google Scholar 

  • Forbes AJ, Lin H, Ingham PW and Spradling AC (1996b) Hedgehog is required for the proliferation and specification of ovarian somatic cells prior to egg chamber formation in Drosophila. Development 122(4): 1125–1135

    CAS  PubMed  Google Scholar 

  • Gateff E (1982) Gonial cell neoplasm of genetic origin affecting both sexes of Drosophila melanogaster. Prog Clin Biol Res 85(Pt B): 621–632

    PubMed  Google Scholar 

  • Godt D and Tepass U (1998) Drosophila oocyte localization is mediated by differential cadherin-based adhesion. Nature 395(6700): 387–391

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Reyes A (2003) Stem cells, niches and cadherins: a view from Drosophila. J Cell Sci 116(Pt 6): 949–954

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Reyes A and St Johnston D (1998) The Drosophila AP axis is polarised by the cadherin-mediated positioning of the oocyte. Development 125(18): 3635–3644

    CAS  PubMed  Google Scholar 

  • Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A and Moss H et al (1999) Mammalian telomeres end in a large duplex loop. Cell 97(4): 503–514

    Article  CAS  PubMed  Google Scholar 

  • Hawley RS (2003) Human meiosis: model organisms address the maternal age effect. Curr Biol 13(8): R305–R307

    Article  CAS  PubMed  Google Scholar 

  • Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37: 614–636

    Article  CAS  PubMed  Google Scholar 

  • Heifetz Y, Vandenberg LN, Cohn HI and Wolfner MF (2005) Two cleavage products of the Drosophila accessory gland protein ovulin can independently induce ovulation. Proc Natl Acad Sci USA 102(3): 743–748

    Article  CAS  PubMed  Google Scholar 

  • Helfand SL and Rogina B (2003) Genetics of aging in the fruit fly, Drosophila melanogaster. Annu Rev Genet 37: 329–348

    Article  CAS  PubMed  Google Scholar 

  • Howard BH (1996) Replicative senescence: considerations relating to the stability of heterochromatin domains. Exp Gerontol 31(1–2): 281–293

    Article  CAS  PubMed  Google Scholar 

  • Hudson JB, Podos SD, Keith K, Simpson SL and Ferguson EL (1998) The Drosophila Medea gene is required downstream of dpp and encodes a functional homolog of human Smad4. Development 125(8): 1407–1420

    CAS  PubMed  Google Scholar 

  • Itahana K, Zou Y, Itahana Y, Martinez JL, Beausejour C and Jacobs JJ et al (2003) Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol Cell Biol 23(1): 389–401

    Article  CAS  PubMed  Google Scholar 

  • Jones L (2001) Stem cells: so what's in a niche? Curr Biol 11(12): R484–R486

    Article  CAS  PubMed  Google Scholar 

  • Kahn T, Savitsky M, Georgiev P (2000) Attachment of HeT-A sequences to chromosomal termini in Drosophila melanogaster may occur by different mechanisms. Mol Cell Biol 20(20): 7634–7642

    Article  CAS  PubMed  Google Scholar 

  • Kai T and Spradling A (2003) An empty Drosophila stem cell niche reactivates the proliferation of ectopic cells. Proc Natl Acad Sci USA 100(8): 4633–4638

    Article  CAS  PubMed  Google Scholar 

  • Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120(4): 449–460

    Article  CAS  PubMed  Google Scholar 

  • Kern S, Ackermann M, Stearns SC and Kawecki TJ (2001) Decline in offspring viability as a manifestation of aging in Drosophila melianogaster. Evolution Int J Org Evolution 55(9): 1822–1831

    CAS  PubMed  Google Scholar 

  • Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD and Ho PL et al (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266(5193): 2011–2115

    CAS  PubMed  Google Scholar 

  • King FJ and Lin H (1999) Somatic signaling mediated by fs(1)Yb is essential for germline stem cell maintenance during Drosophila oogenesis. Development 126(9): 1833–1844

    CAS  PubMed  Google Scholar 

  • King FJ, Szakmary A, Cox DN and Lin H (2001) Yb modulates the divisions of both germline and somatic stem cells through piwi- and hh-mediated mechanisms in the Drosophila ovary. Mol Cell 7(3): 497–508

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood TBL (1995) The evolution of aging. Rev Clin Gerontol 5: 3–9

    Article  Google Scholar 

  • Kirkwood TB (2004) Intrinsic ageing of gut epithelial stem cells. Mech Ageing Dev 125(12): 911–915

    Article  CAS  PubMed  Google Scholar 

  • Landis GN and Tower J (2005) Superoxide dismutase evolution and life span regulation. Mech Ageing Dev 126(3): 365–379

    Article  CAS  PubMed  Google Scholar 

  • Lavoie CA, Ohlstein B and McKearin DM (1999) Localization and function of Bam protein require the benign gonial cell neoplasm gene product. Dev Biol 212(2): 405–413

    Article  CAS  PubMed  Google Scholar 

  • Leon A and McKearin D (1999) Identification of TER94, an AAA ATPase protein, as a Bam-dependent component of the Drosophila fusome. Mol Biol Cell 10(11): 3825–3834

    CAS  PubMed  Google Scholar 

  • Letsou A, Arora K, Wrana JL, Simin K, Twombly V and Jamal J et al. (1995) Drosophila Dpp signaling is mediated by the punt gene product: a dual ligand-binding type II receptor of the TGF beta receptor family. Cell 80(6): 899–908

    Article  CAS  PubMed  Google Scholar 

  • Levis RW (1989) Viable deletions of a telomere from a Drosophila chromosome. Cell 58(4): 791–801

    Article  CAS  PubMed  Google Scholar 

  • Levy MZ, Allsopp RC, Futcher AB, Greider CW and Harley CB (1992) Telomere end-replication problem and cell aging. J Mol Biol 225(4): 951–960

    Article  CAS  PubMed  Google Scholar 

  • Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M and Lowe SW (1998) Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 12(19): 3008–3019

    CAS  PubMed  Google Scholar 

  • Lin H and Spradling AC (1995) Fusome asymmetry and oocyte determination in Drosophila. Dev Genet 16(1): 6–12

    Article  CAS  PubMed  Google Scholar 

  • Lin H and Spradling AC (1997) A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124(12): 2463–2476

    CAS  PubMed  Google Scholar 

  • Lin H, Yue L and Spradling AC (1994) The Drosophila fusome, a germline-specific organelle, contains membrane skeletal proteins and functions in cyst formation. Development 120(4): 947–956

    CAS  PubMed  Google Scholar 

  • Margolis J and Spradling AC (1995a) Identification and behavior of epithelial stem cells in the Drosophila ovary. Development 121: 3797–3807

    CAS  PubMed  Google Scholar 

  • Margolis J and Spradling A (1995b) Identification and behavior of epithelial stem cells in the Drosophila ovary. Development 121(11): 3797–3807

    CAS  PubMed  Google Scholar 

  • Maser RS and DePinho RA (2002) Connecting chromosomes, crisis, and cancer. Science 297(5581): 565–569

    Article  CAS  PubMed  Google Scholar 

  • Massague J and Wotton D (2000) Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 19(8): 1745–1754

    Article  CAS  PubMed  Google Scholar 

  • McKearin D, Ohlstein B (1995) A role for the Drosophila bag-of-marbles protein in the differentiation of cystoblasts from germline stem cells. Development 121(9): 2937–2947

    CAS  PubMed  Google Scholar 

  • McKearin DM and Spradling AC (1990) Bag-of-marbles: a Drosophila gene required to initiate both male and female gametogenesis. Genes Dev 4(12B): 2242–2251

    CAS  PubMed  Google Scholar 

  • McMurray MA and Gottschling DE (2004) Aging and genetic instability in yeast. Curr Opin Microbiol 7(6): 673–679

    Article  CAS  PubMed  Google Scholar 

  • Melnikova L, Biessmann H and Georgiev P (2005) The ku protein complex is involved in length regulation of Drosophila telomeres. Genetics 170(1): 221–235

    Article  CAS  PubMed  Google Scholar 

  • Miquel J, Economos AC, Bensch KG, Atlan H and Johnson JJE (1979) Review of cell aging in Drosophila and mouse. Age 2: 78–88

    Google Scholar 

  • Morrison SJ, Shah NM and Anderson DJ (1997) Regulatory mechanisms in stem cell biology. Cell 88(3): 287–298

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Jordan JL, Cross GA, de Lange T and Griffith JD (2001) t-loops at trypanosome telomeres. EMBO J 20(3): 579–588

    Article  CAS  PubMed  Google Scholar 

  • Nellen D, Affolter M and Basler K (1994) Receptor serine/threonine kinases implicated in the control of Drosophila body pattern by decapentaplegic. Cell 78(2): 225–237

    Article  CAS  PubMed  Google Scholar 

  • Ohlstein B and McKearin D (1997) Ectopic expression of the Drosophila Bam protein eliminates oogenic germline stem cells. Development 124(18): 3651–3662

    CAS  PubMed  Google Scholar 

  • Padgett RW, St Johnston RD and Gelbart WM (1987) A transcript from a Drosophila pattern gene predicts a protein homologous to the transforming growth factor-beta family. Nature 325(6099): 81–84

    Article  CAS  PubMed  Google Scholar 

  • Pardue ML and DeBaryshe PG (2003) Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. Annu Rev Genet 37: 485–511

    Article  CAS  PubMed  Google Scholar 

  • Parisi M and Lin H (1999) The Drosophila pumilio gene encodes two functional protein isoforms that play multiple roles in germline development, gonadogenesis, oogenesis and embryogenesis. Genetics 153(1): 235–250

    CAS  PubMed  Google Scholar 

  • Partridge L and Barton NH (1993) Optimality, mutation and the evolution of aging. Nature 362: 305–311

    Article  CAS  PubMed  Google Scholar 

  • Partridge L, Gems D and Withers DJ (2005) Sex and death: what is the connection? Cell 120(4): 461–472

    Article  CAS  PubMed  Google Scholar 

  • Peeper DS, Dannenberg JH, Douma S, te Riele H and Bernards R (2001) Escape from premature senescence is not sufficient for oncogenic transformation by Ras. Nat Cell Biol 3(2): 198–203

    Article  CAS  PubMed  Google Scholar 

  • Peifer M and Polakis P (2000) Wnt signaling in oncogenesis and embryogenesis—a look outside the nucleus. Science 287(5458): 1606–1609

    Article  CAS  PubMed  Google Scholar 

  • Penton A, Chen Y, Staehling-Hampton K, Wrana JL, Attisano L and Szidonya J et al (1994) Identification of two bone morphogenetic protein type I receptors in Drosophila and evidence that Brk25D is a decapentaplegic receptor. Cell 78(2): 239–250

    Article  CAS  PubMed  Google Scholar 

  • Priest NK, Mackowiak B and Promislow DE (2002) The role of parental age effects on the evolution of aging. Evolution Int J Org Evolution 56(5): 927–935

    PubMed  Google Scholar 

  • Raftery LA and Sutherland DJ (1999) TGF-beta family signal transduction in Drosophila development: from Mad to Smads. Dev Biol 210(2): 251–268

    Article  CAS  PubMed  Google Scholar 

  • Riggleman B, Wieschaus E and Schedl P (1989) Molecular analysis of the armadillo locus: uniformly distributed transcripts and a protein with novel internal repeats are associated with a Drosophila segment polarity gene. Genes Dev 3(1): 96–113

    CAS  PubMed  Google Scholar 

  • Rose M and Charlesworth B (1980) A test of evolutionary theories of senescence. Nature 287: 141–142

    Article  CAS  PubMed  Google Scholar 

  • Rose MR (1991) Evolutionary Biology of Aging. Oxford University Press, New York

    Google Scholar 

  • Ruberte E, Marty T, Nellen D, Affolter M and Basler K (1995) An absolute requirement for both the type II and type I receptors, punt and thick veins, for dpp signaling in vivo. Cell 80(6): 889–897

    Article  CAS  PubMed  Google Scholar 

  • Rubin GM and Spradling AC (1982) Genetic transformation of Drosophila with transposable element vectors. Science 218: 348–353

    CAS  PubMed  Google Scholar 

  • Rubio MA, Kim SH and Campisi J (2002) Reversible manipulation of telomerase expression and telomere length. Implications for the ionizing radiation response and replicative senescence of human cells. J Biol Chem 277(32): 28609–28617

    Article  CAS  PubMed  Google Scholar 

  • Samper E, Goytisolo FA, Slijepcevic P, van Buul PP and Blasco MA (2000) Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang. EMBO Rep 1(3): 244–252

    Article  CAS  PubMed  Google Scholar 

  • Sekelsky JJ, Newfeld SJ, Raftery LA, Chartoff EH and Gelbart WM (1995) Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 139(3): 1347–1358

    CAS  PubMed  Google Scholar 

  • Sekelsky JJ, Brodsky MH and Burtis KC (2000) DNA repair in Drosophila: insights from the Drosophila genome sequence. Journal of Cell Biology 150: F31–F36

    Article  CAS  PubMed  Google Scholar 

  • Serrano M and Blasco MA (2001) Putting the stress on senescence. Curr Opin Cell Biol 13(6): 748–753

    Article  CAS  PubMed  Google Scholar 

  • Shay JW and Wright WE (2001) Telomeres and telomerase: implications for cancer and aging. Radiat Res 155(1 Pt 2): 188–193

    CAS  PubMed  Google Scholar 

  • Sheen FM and Levis RW (1994) Transposition of the LINE-like retrotransposon TART to Drosophila chromosome termini. Proc Natl Acad Sci USA 91(26): 12510–12514

    CAS  PubMed  Google Scholar 

  • Smulders-Srinivasan TK and Lin H (2003) Screens for piwi suppressors in Drosophila identify dosage-dependent regulators of germline stem cell division. Genetics 165(4): 1971–1991

    CAS  PubMed  Google Scholar 

  • Song X and Xie T (2002) DE-cadherin-mediated cell adhesion is essential for maintaining somatic stem cells in the Drosophila ovary. Proc Natl Acad Sci USA 99(23): 14813–14818

    Article  CAS  PubMed  Google Scholar 

  • Song X and Xie T (2003) Wingless signaling regulates the maintenance of ovarian somatic stem cells in Drosophila. Development 130(14): 3259–3268

    Article  CAS  PubMed  Google Scholar 

  • Song X, Zhu CH, Doan C and Xie T (2002) Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science 296(5574): 1855–1857

    Article  CAS  PubMed  Google Scholar 

  • Spradling AC, Stern DM, Kiss I, Roote J, Laverty T and Rubin GM (1995) Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proceedings of the National Academy of Science USA 92: 10824–10830

    CAS  Google Scholar 

  • Spradling AC, de Cuevas M, Drummond-Barbosa D, Keyes L, Lilly M and Pepling M et al (1997) The Drosophila germarium: stem cells, germ line cysts, and oocytes. Cold Spring Harb Symp Quant Biol 62: 25–34

    CAS  PubMed  Google Scholar 

  • Spradling A, Drummond-Barbosa D and Kai T (2001) Stem cells find their niche. Nature 414(6859): 98–104

    Article  CAS  PubMed  Google Scholar 

  • Stanulis-Praeger BM (1987) Cellular senescence revisited: a review. Mech Ageing Dev 38(1): 1–48

    Article  CAS  PubMed  Google Scholar 

  • Tatar M (2004) The neuroendocrine regulation of Drosophila aging. Exp Gerontol 39(11–12): 1745–1750

    Article  CAS  PubMed  Google Scholar 

  • Tatar M, Bartke A and Antebi A (2003) The endocrine regulation of aging by insulin-like signals. Science 299(5611): 1346–1351

    Article  CAS  PubMed  Google Scholar 

  • Tepass U, Gruszynski-DeFeo E, Haag TA, Omatyar L, Torok T and Hartenstein V (1996) Shotgun encodes Drosophila E-cadherin and is preferentially required during cell rearrangement in the neurectoderm and other morphogenetically active epithelia. Genes Dev 10(6): 672–685

    CAS  PubMed  Google Scholar 

  • Tominaga K, Olgun A, Smith JR and Pereira-Smith OM (2002) Genetics of cellular senescence. Mech Ageing Dev 123(8): 927–936

    Article  CAS  PubMed  Google Scholar 

  • Tower J (2000) Transgenic methods for increasing Drosophila life span. Mech Ageing Dev 118(1–2): 1–14

    Article  CAS  PubMed  Google Scholar 

  • Tsuneizumi K, Nakayama T, Kamoshida Y, Kornberg TB, Christian JL and Tabata T (1997) Daughters against dpp modulates dpp organizing activity in Drosophila wing development. Nature 389(6651): 627–631

    Article  CAS  PubMed  Google Scholar 

  • Uemura T, Oda H, Kraut R, Hayashi S, Kotaoka Y and Takeichi M (1996) Zygotic Drosophila E-cadherin expression is required for processes of dynamic epithelial cell rearrangement in the Drosophila embryo. Genes Dev 10(6): 659–671

    CAS  PubMed  Google Scholar 

  • Wisotzkey RG, Mehra A, Sutherland DJ, Dobens LL, Liu X and Dohrmann C et al (1998) Medea is a Drosophila Smad4 homolog that is differentially required to potentiate DPP responses. Development 125(8): 1433–1445

    CAS  PubMed  Google Scholar 

  • Wolfner MF (2002) The gifts that keep on giving: physiological functions and evolutionary dynamics of male seminal proteins in Drosophila. Heredity 88(2): 85–93

    Article  CAS  PubMed  Google Scholar 

  • Wright WE, Piatyszek MA, Rainey WE, Byrd W and Shay JW (1996) Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 18(2): 173–179

    Article  CAS  PubMed  Google Scholar 

  • Xie T and Spradling AC (1998) Decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell 94(2): 251–260

    Article  CAS  PubMed  Google Scholar 

  • Xie T and Spradling AC (2000) A niche maintaining germ line stem cells in the Drosophila ovary. Science 290(5490): 328–330

    Article  CAS  PubMed  Google Scholar 

  • Xie T, Finelli AL and Padgett RW (1994) The Drosophila saxophone gene: a serine–threonine kinase receptor of the TGF-beta superfamily. Science 263(5154): 1756–1759

    CAS  PubMed  Google Scholar 

  • Zhang Y and Kalderon D (2000) Regulation of cell proliferation and patterning in Drosophila oogenesis by Hedgehog signaling. Development 127(10): 2165–2176

    CAS  PubMed  Google Scholar 

  • Zhang Y and Kalderon D (2001) Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature 410(6828): 599–604

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Tower.

About this article

Cite this article

Waskar, M., Li, Y. & Tower, J. Stem cell aging in the Drosophila ovary. AGE 27, 201–212 (2005). https://doi.org/10.1007/s11357-005-2914-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-005-2914-1

Key words

Navigation