Skip to main content
Log in

Influences of graphene oxide on biofilm formation of gram-negative and gram-positive bacteria

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, we evaluated the influences of graphene oxide (GO) on biofilm formation. Escherichia coli MG1655 and Bacillus subtilis 168 were used as models for Gram-negative and Gram-positive bacteria. The growth profiles and viability assays indicated that GO exhibited a high antibacterial activity, of which the negative effects on bacteria growth raised with the increasing GO concentration. The antibacterial activity of GO was mainly attributed to the membrane stress and ROS-independent oxidative stress. Moreover, it was worthy to note that the biofilm formation was enhanced in the presence of GO at low dosage whereas inhibited in the high-concentration GO environment. These results could be explained by the roles of the dead cells, which were inactivated by GO. When the concentration of GO was limited, only a part of the cells would be inactivated, which may then serve as a protection barrier as well as the necessary nutrient to the remaining living cells for the formation of biofilm. In contrast, with a sufficient presence of GO, almost all cells can be inactivated completely and thus the formation of biofilm could no longer be triggered. Overall, the present work provides significant new insights on the influence of carbon nanomaterials towards biofilm formation, which has far-reaching implications in the field of biofouling and membrane bioreactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4:5731–5736

    Article  CAS  Google Scholar 

  • Bar-Zeev E, Passow U, Romero-Vargas Castrillón S, Elimelech M (2015) Transparent exopolymer particles: from aquatic environments and engineered systems to membrane biofouling. Environ Sci Technol 49:691–707

    Article  CAS  Google Scholar 

  • Blaustein RA, Shelton DR, Van Kessel JAS, Karns JS, Stocker MD, Pachepsky YA (2015) Irrigation waters and pipe-based biofilms as sources for antibiotic-resistant bacteria. Environ Monit Assess 188:56

    Article  Google Scholar 

  • Chen J, Yao BW, Li C, Shi GQ (2013) An improved hummers method for eco-friendly synthesis of graphene oxide. Carbon 64:225–229

    Article  CAS  Google Scholar 

  • Chowdhury I, Duch MC, Mansukhani ND, Hersam MC, Bouchard D (2013) Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment. Environ Sci Technol 47:6288–6296

    Article  CAS  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  CAS  Google Scholar 

  • Ding LH, Stilwell J, Zhang TT, Elboudwarej O, Jiang HJ, Selegue JP, Cooke PA, Gray JW, Chen FF (2005) Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett 5:2448–2464

    Article  CAS  Google Scholar 

  • Eda G, Chhowalla M (2010) Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv Mater 22:2392–2415

    Article  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  Google Scholar 

  • Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 6:103–109

    Article  CAS  Google Scholar 

  • Greendyke R, Byrd TF (2008) Differential antibiotic susceptibility of Mycobacterium abscessus variants in biofilms and macrophages compared to that of planktonic bacteria. Antimicrob Agents Chemother 52:2019–2026

    Article  CAS  Google Scholar 

  • Gurunathan S, Han JW, Dayem AA, Eppakayala V, Kim J-H (2012) Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int J Nanomedicine 7:5901

    Article  CAS  Google Scholar 

  • Hsieh H-S, Jafvert CT (2015) Reactive oxygen species generation and dispersant-dependent electron transfer through single-walled carbon nanotubes in water. Carbon 89:361–371

    Article  CAS  Google Scholar 

  • Hummers Jr WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  Google Scholar 

  • Jackson DW, Suzuki K, Oakford L, Simecka JW, Hart ME, Romeo T (2002) Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J Bacteriol 184:290–301

    Article  CAS  Google Scholar 

  • Jewell KS, Falås P, Wick A, Joss A, Ternes TA (2016) Transformation of diclofenac in hybrid biofilm–activated sludge processes. Water Res 105:559–567

    Article  CAS  Google Scholar 

  • Kang S, Herzberg M, Rodrigues DF, Elimelech M (2008) Antibacterial effects of carbon nanotubes: size does matter. Langmuir 24:6409–6413

    Article  CAS  Google Scholar 

  • Krishnamoorthy K, Veerapandian M, Zhang LH, Yun K, Kim SJ (2012) Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J Phys Chem C 116:17280–17287

    Article  CAS  Google Scholar 

  • Kumar PV, Bardhan NM, Tongay S, JQ W, Belcher AM, Grossman JC (2014) Scalable enhancement of graphene oxide properties by thermally driven phase transformation. Nature Chem 6:151–158

    Article  CAS  Google Scholar 

  • Li Q, Xia PF, Tao ZY, Wang SG (2017) Modeling biofilms in water systems with new variables: a review. Water 9:462

    Article  Google Scholar 

  • Liu SB, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang RR, Kong J, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980

    Article  CAS  Google Scholar 

  • Liu S, Gunawan C, Barraud N, Rice SA, Harry EJ, Amal R (2016) Understanding, monitoring, and controlling biofilm growth in drinking water distribution systems. Environ Sci Technol 50:8954–8976

    Article  CAS  Google Scholar 

  • Lv T, Carvalho PN, Zhang L, Zhang Y, Button M, Arias CA, Weber KP, Brix H (2017) Functionality of microbial communities in constructed wetlands used for pesticide remediation: influence of system design and sampling strategy. Water Res 110:241–251

    Article  CAS  Google Scholar 

  • Lyon DY, Brunet L, Hinkal GW, Wiesner MR, Alvarez PJ (2008) Antibacterial activity of fullerene water suspensions (nC60) is not due to ROS-mediated damage. Nano Lett 8:1539–1543

    Article  CAS  Google Scholar 

  • Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC, Ramesh GT (2005) Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-κB in human keratinocytes. Nano Lett 5:1676–1684

    Article  CAS  Google Scholar 

  • Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  Google Scholar 

  • Musico YLF, Santos CM, Dalida MLP, Rodrigues DF (2014) Surface modification of membrane filters using graphene and graphene oxide-based nanomaterials for bacterial inactivation and removal. ACS Sustain Chem Eng 2:1559–1565

    Article  CAS  Google Scholar 

  • Pasquini LM, Sekol RC, Taylor AD, Pfefferle LD, Zimmerman JB (2013) Realizing comparable oxidative and cytotoxic potential of single-and multiwalled carbon nanotubes through annealing. Environ Sci Technol 47:8775–8783

    CAS  Google Scholar 

  • Perreault F, De Faria AF, Nejati S, Elimelech M (2015) Antimicrobial properties of graphene oxide nanosheets: why size matters. ACS Nano 9:7226–7236

    Article  CAS  Google Scholar 

  • Pompella A, Visvikis A, Paolicchi A, De Tata V, Casini AF (2003) The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol 66:1499–1503

    Article  CAS  Google Scholar 

  • Radzig MA, Nadtochenko VA, Koksharova OA, Kiwi J, Lipasova VA, Khmel IA (2013) Antibacterial effects of silver nanoparticles on gram-negative bacteria: influence on the growth and biofilms formation, mechanisms of action. Colloids Surf B: Biointerfaces 102:300–306

    Article  CAS  Google Scholar 

  • Reid T, VanMensel D, Droppo IG, Weisener CG (2016) The symbiotic relationship of sediment and biofilm dynamics at the sediment water interface of oil sands industrial tailings ponds. Water Res 100:337–347

    Article  CAS  Google Scholar 

  • Rodrigues DF, Elimelech M (2010) Toxic effects of single-walled carbon nanotubes in the development of E. coli biofilm. Environ Sci Technol 44:4583–4589

    Article  CAS  Google Scholar 

  • Rudrappa T, Biedrzycki ML, Bais HP (2008) Causes and consequences of plant-associated biofilms. FEMS Microbiol Ecol 64:153–166

    Article  CAS  Google Scholar 

  • Schembri MA, Kjærgaard K, Klemm P (2003) Global gene expression in Escherichia coli biofilms. Mol Microbiol 48:253–267

    Article  CAS  Google Scholar 

  • Sotirelis NP, Chrysikopoulos CV (2015) Interaction between graphene oxide nanoparticles and quartz sand. Environ Sci Technol 49:13413–13421

    Article  CAS  Google Scholar 

  • Sun XF, Qin J, Xia PF, Guo BB, Yang CM, Song C, Wang SG (2015) Graphene oxide–silver nanoparticle membrane for biofouling control and water purification. Chem Eng J 281:53–59

    Article  CAS  Google Scholar 

  • Sutherland MW, Learmonth BA (1997) The tetrazolium dyes MTS and XTT provide new quantitative assays for superoxide and superoxide dismutase. Free Radic Res 27:283–289

    Article  CAS  Google Scholar 

  • Vecitis CD, Zodrow KR, Kang S, Elimelech M (2010) Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes. ACS Nano 4:5471–5479

    Article  CAS  Google Scholar 

  • Vlamakis H, Chai YR, Beauregard P, Losick R, Kolter R (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nature Reviews Microbiology 11:157–168

    Article  CAS  Google Scholar 

  • Xia TJ, Fortner JD, Zhu DQ, Qi ZC, Chen W (2015) Transport of sulfide-reduced graphene oxide in saturated quartz sand: cation-dependent retention mechanisms. Environ Sci Technol 49:11468–11475

    Article  CAS  Google Scholar 

  • Zhang JL, Yang HJ, Shen GX, Cheng P, Zhang JY, Guo SW (2010) Reduction of graphene oxide via L-ascorbic acid. Chem Commun 46:1112–1114

    Article  CAS  Google Scholar 

  • Zhao GX, Li JX, Ren XM, Chen CL, Wang XK (2011) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45:10454–10462

    Article  CAS  Google Scholar 

Download references

Funding

The research was supported by the National Natural Science Foundation of China (21676161, 21476130 and 51208283).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Fei Sun or Shu-Guang Wang.

Additional information

Responsible editor: Diane Purchase

Electronic supplementary material

ESM 1

(DOCX 2780 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C., Yang, CM., Sun, XF. et al. Influences of graphene oxide on biofilm formation of gram-negative and gram-positive bacteria. Environ Sci Pollut Res 25, 2853–2860 (2018). https://doi.org/10.1007/s11356-017-0616-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0616-8

Keywords

Navigation