Skip to main content
Log in

Metabolomic analysis of a human oral glucose tolerance test reveals fatty acids as reliable indicators of regulated metabolism

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Gas chromatography/mass spectrometry-based metabolomics was applied to investigate dynamic changes in the plasma metabolome upon an oral glucose tolerance test (OGTT). The OGTT is a frequently used diagnostic test of glucose homeostasis and diabetes. Diabetes is diagnosed either when glucose levels ≥7.0 mM in the fasting state or ≥11.0 mM at 2 h after oral glucose intake. The accuracy of the OGTT would, however, most likely improve if additional variables could be identified. In the present study, plasma samples were drawn every 15 min for 2 h after an oral glucose load of 75 g preceded by an overnight fast in healthy individuals. Blood plasma levels of more than 200 putative metabolites were measured. Multivariate modelling was used to distinguish metabolic regulation due to the glucose challenge from that of other variability. Two data scaling methods were applied, yielding similar results when evaluated by appropriate diagnostic tools. Fatty acid levels were found to be strongly decreased during the OGTT. Also, the levels of amino acids were shown to decrease. However, technical and uninduced biological variations were found to affect the amino acid levels to a greater extent than the fatty acid levels, making the fatty acids more reliable as indicators of metabolic regulation. Levels of several metabolites correlated with the quadratic glucose profile and two were found having an inverse correlation. Raw data plots of all identified significantly altered metabolites confirmed the excellent performance of the multivariate models. Using this approach, a better understanding of the metabolic response to an OGTT can be achieved, paving the way for inclusion of other variables describing appropriate metabolic control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anastassiades, M., Mastovska, K., & Lehotay, S. J. (2003). Evaluation of analyte protectants to improve gas chromatographic analysis of pesticides. Journal of Chromatography A, 1015, 163–184.

    Article  CAS  PubMed  Google Scholar 

  • Bylesjö, M., Eriksson, D., Sjödin, A., Jansson, S., Moritz, T., & Trygg, J. (2007). Orthogonal projections to latent structures as a strategy for microarray data normalization. BMC Bioinformatics, 8(207), 201–210.

    Google Scholar 

  • Dettmer, K., Aranov, P. A., & Hammock, B. D. (2007). Mass spectrometry-based metabolomics. Mass Spectrometry Reviews, 26, 51–78.

    Article  CAS  PubMed  Google Scholar 

  • Eriksson, L., Johansson, E., Kettaneh-Wold, N., Trygg, J., Wikström, C., & Wold, S. (2006). Multi- and megavariate data analysis. Part 1: Basic principles and applications. Umeå: Umetrics Academy.

  • Fernandez, C., Fransson, U., Hallgard, E., Spégel, P., Holm, C., Krogh, M., et al. (2008). Metabolomic and proteomic analysis of a clonal insulin-producing beta-cell line (INS-1 832/13). Journal of Proteome Research, 7, 400–411.

    Article  CAS  PubMed  Google Scholar 

  • Fiehn, O. (2002). Metabolomics—the link between genotypes and phenotypes. Plant Molecular Biology, 48, 155–171.

    Article  CAS  PubMed  Google Scholar 

  • Fiehn, O., Kopka, J., Dörmann, P., Altman, T., Trethewey, R. N., & Willmitzer, L. (2000). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18, 1157–1161.

    Article  CAS  PubMed  Google Scholar 

  • Gullberg, J., Jonsson, P., Nordström, A., Sjöström, M., & Moritz, T. (2004). Design of experiments: An efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatograhy/mass spectrometry. Analytical Biochemistry, 331, 283–295.

    Article  CAS  PubMed  Google Scholar 

  • Hanson, R. L., Pratley, R. E., Bogardus, C., Narayan, K. M. V., Roumain, J. M. L., Imperatore, G., et al. (2000). Evaluation of simple indeces of insulin sensitivity and insulin secretion for use in epidemiologic studies. American Journal of Epidemology, 151, 190–198.

    CAS  Google Scholar 

  • Heijboer, A. C., Pijl, H., van den Hoek, A. M., Havekes, L. M., Romijn, J. A., & Crossmit, E. P. (2006). Gut-brain axis: Regulation of glucose metabolism. Journal of Neuroendocrinology, 18, 883–894.

    Article  CAS  PubMed  Google Scholar 

  • Jiye, A., Trygg, J., Gullberg, J., Johansson, A. I., Jonsson, P., Antti, H., et al. (2005). Extraction and GC/MS analysis of the human blood plasma metabolome. Analytical Chemistry, 77, 8086–8094.

    Article  Google Scholar 

  • Jonsson, P., Sjövik Johansson, E., Wuolikainen, A., Lindberg, J., Shuppe-Koistinen, I., Kusano, M., et al. (2006). Predictive metabolite profiling applying hierchal multivariate curve resolution to GC–MS data—A potential tool for multi-parametric diagnosis. Journal of Proteome Research, 5, 1407–1414.

    Article  CAS  PubMed  Google Scholar 

  • Kanani, H. H., & Klapa, M. I. (2007). Data correction strategy for metabolomics analysis using gas chromatography–mass spectrometry. Metabolic Engineering, 9, 39–51.

    Article  CAS  PubMed  Google Scholar 

  • Lindon, J. C., & Nicholson, J. K. (2008). Analytical technologies for metabonomics and metabolomics, and multi-omics information recovery. TrAC Trends in Analytical Chemistry, 27, 194–204.

    Article  CAS  Google Scholar 

  • Shaham, O., Wei, R., Wang, T. J., Ricciardi, C., Lewis, G. D., Vasan, R. S., et al. (2008). Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Molecular Systems Biology, 4(214), 211–219.

    Google Scholar 

  • Trygg, J., Holmes, E., & Lundstedt, T. (2007). Chemometrics in metabonomics. Journal of Proteome Research, 6, 469–479.

    Article  CAS  PubMed  Google Scholar 

  • Trygg, J., & Wold, S. (2002). Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics, 16, 119–128.

    Article  CAS  Google Scholar 

  • van den Berg, R. A., Hoefsloot, H. C. J., Westerhuis, J. A., Smilde, A. K., & van der Werf, M. J. (2006). Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genomics, 7, 142.

    Article  PubMed  Google Scholar 

  • WHO. (2006). WHO Press, Geneva, Switzerland.

  • Wiklund, S., Johansson, E., Sjöström, L., Mellerowicz, E. J., Edlund, U., Schockcor, J. P., et al. (2008). Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Analytical Chemistry, 80, 115–122.

    Article  CAS  PubMed  Google Scholar 

  • Wikström, C., Albano, C., Eriksson, L., Fridén, H., Johansson, E., Nordahl, Å., et al. (1998). Multivariate process and quality monitoring applied to an electrolysis process. Part 1. Process supervision with multivariate control charts. Chemometrics and Intelligent Laboratory Systems, 42, 221–231.

    Article  Google Scholar 

  • Wold, S., Antti, H., Lindgren, F., & Öhmna, J. (1998). Orthogonal signal correction of near-infrared spectra. Chemometrics and Intelligent Laboratory Systems, 44, 175–185.

    Article  CAS  Google Scholar 

  • Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109–130.

    Article  CAS  Google Scholar 

  • Zhao, X., Peter, A., Fritsche, J., Elcnerova, M., Fritsche, A., Häring, H.-U., et al. (2009). Changes of the plasma metabolome during an oral glucose tolerance test: Is there more than glucose to look at? American Journal of Physiology: Endocrinology And Metabolism, 296, E384–E393.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Swedish Research Council, the Crafoord Foundation, The European Foundation for the Study of Diabetes, Lars Hiertas Minne, Fredrik och Ingrid Thurings Foundation, O.E. och Edla Johanssons Vetenskapliga Stiftelse, and Knut and Alice Wallenbergs Foundation and the Royal Physiographic Society for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Spégel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spégel, P., Danielsson, A.P.H., Bacos, K. et al. Metabolomic analysis of a human oral glucose tolerance test reveals fatty acids as reliable indicators of regulated metabolism. Metabolomics 6, 56–66 (2010). https://doi.org/10.1007/s11306-009-0177-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-009-0177-z

Keywords

Navigation