Skip to main content

Advertisement

Log in

Contribution of P2X4 receptor in pain associated with rheumatoid arthritis: a review

  • Review Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Pain is the most common symptom reported by patients with rheumatoid arthritis (RA) even after the resolution of chronic joint inflammation. It is believed that RA-associated pain is not solely due to inflammation, but could also be attributed to aberrant modifications to the central nervous system. The P2X4 receptor (P2X4R) is an ATP-activated purinergic receptor that plays a significant role in the transmission of information in the nervous system and pain. The involvement of P2X4R during the pathogenesis of chronic inflammatory pain and neuropathic pain is well-established. The attenuation of this receptor alleviates disease pathogenesis and related symptoms, including hyperalgesia and allodynia. Although some studies have revealed the contribution of P2X4R in promoting joint inflammation in RA, how it implicates pain associated with RA at peripheral and central nervous systems is still lacking. In this review, the possible contributions of P2X4R in the nervous system and how it implicates pain transmission and responses were examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor

ASC:

PYD- and CARD-domain containing caspase-1

ASIC:

Acid-sensing channel

ADP:

Adenosine diphosphate

ATP:

Adenosine triphosphate

BDNF:

Brain-derived neurotrophin factor

BDNF-TrKB:

BDNF-tyrosine kinase B

BX430:

1-(2,6-Dibromo-4-isopropyl-phenyl)-3-(3-pyridyl)urea

Ca2+ :

Calcium ion

CCI:

Chronic constriction injury

CCL2:

Chemokine ligand 2

CFA:

Complete Freund’s adjuvant

CNS:

Central nervous system

CORM-2:

Tricarbonyldichlororuthenium (II) dimer

COX-2:

Cyclooxygenase-2

CST:

Catestatin

CXCL25:

ATP-mediated C-X-C motif chemokine-5

DMARDs:

Disease-modifying anti-rheumatic drugs

DRG:

Dorsal root ganglion

ENaC:

Epithelial Na+ channel

EPSPs:

Excitatory postsynaptic potentials

ERK 1/2 :

Extracellular signal-regulated kinase 1/2

GABAA :

ɣ-Aminobutyric acid A receptor

GABAergic:

ɣ-Aminobutyric acidergic

IFN-ɣ:

Interferon-ɣ

IL-6:

Interleukin-6

IL-17:

Interleukin-17

IL-1β:

Interleukin-1β

IRF5:

Interferon regulatory factor-5

KCC2:

Potassium-chloride cotransporter

K+ :

Potassium ion

LTD:

Long-term depression

LTP:

Long-term potentiation

MMP-9:

Matrix metallopeptidase-9

Na+ :

Sodium ion

NLRP1:

Pyrin domain containing 1 of activated NLR family

NMDAR:

N-Methyl-d-aspartate receptor

NP-1815-PX:

(5-[3-(5-Thioxo-4H-[1,2,4]oxadiazol-3-yl)phenyl]-1H-naphtho[1, 2-b][1,4]diazepine-2,4(3H,5H)-dione)

PGs:

Prostaglandins

PNI:

Peripheral nerve injury

PPADs:

Pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid)

P2X4R:

P2X4 receptor

P2X7R:

P2X7 receptor

P13K/Akt:

Phosphatidylinositol 3-kinase-protein kinase B

p38 MAPK:

p38 Mitogen-activated protein kinase

RA:

Rheumatoid arthritis

TGF-β2:

Transforming growth factor-β2

Th1:

T-helper cell 1

TNF-α:

Tumor necrosis factor-α

5-BDBD:

5-(3-Bromophenyl)-1,3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one

References

  1. Ten Klooster P, De Graaf N, Vonkeman H (2019) Association between pain phenotype and disease activity in rheumatoid arthritis patients: a non-interventional, longitudinal cohort study. Arthritis Res Ther 21:257

    Article  Google Scholar 

  2. Walsh DA, McWilliams DF (2014) Mechanisms, impact and management of pain in rheumatoid arthritis. Nat Rev Rheumatol 10:581–592. https://doi.org/10.1038/nrrheum.2014.64

    Article  CAS  PubMed  Google Scholar 

  3. Lee YC, Cui J, Lu B, Frits ML, Iannacone CK, Shadick NA, Weinblatt ME, Solomon DH (2011) Pain persists in DAS28 rheumatoid arthritis remission but not in ACR/EULAR remission: a longitudinal observational study. Arhritis Res Ther 13:R83

    Article  Google Scholar 

  4. Hewlett ST, Sanderson T, May J, Alten R, Bingham CO III, Cross M, March L, Pohl C, Woodworth T, Bartlett SJ (2012) I’m hurting, I want to kill myself’: rheumatoid arthritis flare is more than a high joint count—an international patient perspective on flare where medical help is sought. Rheumatology 51(1):69–76. https://doi.org/10.1093/rheumatology/keq455

    Article  PubMed  Google Scholar 

  5. Courvoisier N, Dougados M, Cantagrel A, Goupille P, Meyer O, Sibilia J, Daures JP, Combe B (2008) Prognostic factors of 10-year radiographic outcome in early rheumatoid arthritis: a prospective study. Arthritis Res Ther 10:R106. https://doi.org/10.1186/ar2498

    Article  PubMed  PubMed Central  Google Scholar 

  6. McWilliams DF, Zhang W, Mansell JS, Kiely PD, Young A, Walsh DA (2012) Predictors of change in bodily pain in early rheumatoid arthritis: an inception cohort study. Arthritis Care Res 64:1505–1513. https://doi.org/10.1002/acr.21723

    Article  Google Scholar 

  7. Umeda N, Matsumoto I, Sumida T (2017) The pathogenic role of ACPA in rheumatoid arthritis. Nihon Rinsho Meneki Gakkai Kaishi 40:391–395. https://doi.org/10.2177/jsci.40.391

    Article  CAS  PubMed  Google Scholar 

  8. Wigerbald G, Bas DU, Fernandes-Cerqueira C, Krishanmurthy A, Nandakumar KS, Rogoz S, Kato J, Sandor K, Su J, Lundlberg K, Holmdahl R, Jakobsson P-J, Malmström V, Catrina AI, Klareskorg L, Svensson CI (2016) Autoantibodies to citrullinated proteins may induce joint pain independent of inflammation. Ann Rheum Dis 75:730–865. https://doi.org/10.1136/annrheumdis-2015-208094

    Article  CAS  Google Scholar 

  9. Christensen AW, Rifbjerg-Madsen S, Christensen R, Dreyer L, Tillingsøe H, Seven S, Boesen M, Ellegard K, Bliddal H, Danneskiold-Samsøe B (2016) Non-nociceptive pain in rheumatoid arthritis is frequent and affects disease activity estimation: cross-sectional data from the FRAME study. Scand J Rheumatol 45:461–469. https://doi.org/10.3109/03009742.2016.1139174

    Article  CAS  PubMed  Google Scholar 

  10. Zhang W-J, Zhu Z-M, Liu Z-X (2020a) The role of P2X4 receptor in neuropathic pain and its pharmacological properties. Pharmacol Res 158:104875. https://doi.org/10.1016/j.phrs.2020.104875

    Article  CAS  PubMed  Google Scholar 

  11. Khakh BS, North RA (2006) P2X receptors as cell-surface ATP sensors in health and disease. Nature 442:527–532. https://doi.org/10.1038/nature04886

    Article  CAS  PubMed  Google Scholar 

  12. Murrel-Lagnado RD, Qureshi OS (2008) Assembly and trafficking of P2X purinergic receptors. Mol Membr Biol 25:321–331. https://doi.org/10.1080/09687680802050385

    Article  CAS  Google Scholar 

  13. Collo G, North RA, Kawashima E, Merlo-Pich E, Neidhart S, Suprenant A, Buell G (1996) Cloning of P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J Neurosci 16:2495–2507. https://doi.org/10.1523/JNEUROSCI.16-08-02495.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang W-J, Luo H-L, Zhu Z-M (2020b) The role of P2X4 receptors in chronic pain: a potential pharmacological target. Biomed Pharmacother 129:110447. https://doi.org/10.1016/j.biopha.2020.110447

    Article  CAS  PubMed  Google Scholar 

  15. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067. https://doi.org/10.1152/physrev.00015.2002

    Article  CAS  PubMed  Google Scholar 

  16. Boyden SD, Hossain IN, Wohlfahrt A, Lee YC (2016) Non-inflammatory causes of pain in patients with rheumatoid arthritis. Curr Rheumatol Rep 18:30. https://doi.org/10.1007/s11926-016-0581-0

    Article  CAS  PubMed  Google Scholar 

  17. Dal Ben D, Buccioni M, Lambertucci C, Marucci G, Thomas A, Volpini R (2015) Purinergic P2X receptors: structural models and analysis of ligand-target interaction. Eur J Med Chem 89:561–580. https://doi.org/10.1016/j.ejmech.2014.10.071

    Article  CAS  PubMed  Google Scholar 

  18. Asif A, Khalid M, Ahmad H, Rehman AU (2019) Role of purinergic receptors in hepatobiliary carcinoma in Pakistani population: an approach towards proinflammatory role of P2X4 and P2X7 receptors. Purinergic Signal 15:367–374. https://doi.org/10.1007/s11302-019-09675-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang Y, Chen Z, Liu C, Lu X, Yang C, Qiu S (2019) Distributive differences of P2Xs between the forelimb and hind limb of adjuvant arthritis rats and intervention by Notopterygh rhizoma et radix. Pharm Biol 57:81–88. https://doi.org/10.1080/13880209.2018.1561730

    Article  CAS  Google Scholar 

  20. Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424:778–783. https://doi.org/10.1038/nature01786

    Article  CAS  PubMed  Google Scholar 

  21. Harkat M (2017) Etude moléculaire de la dilatation des récepteurs P2X. Doctoral dissertation, Université de Strasbourg

    Google Scholar 

  22. Matsumura Y, Yamashita T, Sasaki A, Nakata A, Kohno K, Masuda T, Tozaki-Saitoh H, Imai T, Kuraishi Y, Tsuda M (2016) A novel P2X4 receptor-selective antagonist produces anti-allodynic effect in a mouse model of herpetic pain. Sci Rep 6:32461. https://doi.org/10.1038/srep32461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang W, Liu Y, Yang B, Liu Z, Yu Q (2019) Microencapsulated olfactory ensheathing-cell transplantation reduces pain in rats by inhibiting P2X4 receptor overexpression in the dorsal root ganglion. Neuro Report 30:120–126. https://doi.org/10.1097/WNR.0000000000001170

    Article  CAS  Google Scholar 

  24. Engel T, Alves M, Sheedy C, Henshall DC (2016) ATPergic signalling during seizures and epilepsy. Neuropharmacology 104:140–153. https://doi.org/10.1016/j.neuropharm.2015.11.001

    Article  CAS  PubMed  Google Scholar 

  25. Ulmann L, Levavasseur F, Avignone E, Peyroutou R, Hirbec H, Audinat E, Rassendren F (2013) Involvement of P2X4 receptors in hippocampal microglial activation after status epilepticus. Glia 61:1306–1319. https://doi.org/10.1002/glia.22516

    Article  PubMed  Google Scholar 

  26. Bertin E, Deluc T, Pilch KS, Martinez A, Pougnet J-T, Doudnikoff E, Allain A-E, Bergmann P, Rousseau M, Toulmé E (2020) Increased surface P2X4 receptor regulates anxiety and memory in P2X4 internalization-defective knock-in mice. Mol Psychiatry. https://doi.org/10.1038/s41380-019-0641-8

  27. Srivastava P, Cronin CG, Scranton VL, Jacobson KA, Liang BT, Verma R (2020) Neuroprotective and neuro-rehabilitative effects of acute purinergic receptor P2X4 (P2X4R) blockade after ischemic stroke. Exp Neurol 329:113308. https://doi.org/10.1016/j.expneurol.2020.113308

    Article  CAS  PubMed  Google Scholar 

  28. Tóth A, Antal Z, Bereczeki D, Sperlágh B (2019) Purinergic signalling in Parkinson’s disease: a multi-target system to combat neurodegeneration. Neurochem Res 44:2413–2422. https://doi.org/10.1007/s11064-019-02798-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wilkermann VE, Thompson KE, Neuland K, Jaramillo AM, Fois G, Schmidt H, Wittekindt OH, Han W, Tuvim MJ, Dickey BF (2019) Inflammation-induced upregulation of P2X4 expression augments mucin secretion in airway epithelia. Am J Physiol-Lung C 316:L58–L70. https://doi.org/10.1152/ajplung.00157.2018

    Article  CAS  Google Scholar 

  30. Zabala A, Vazquez-Villoldo N, Rissiek B, Gejo J, Martin A, Palomino A, Perez-Samartín A, Pulagam KR, Lukowiak M, Capetillo-Zarate E (2018) P2X4 receptor controls microglia activation and favors remyelination in autoimmune encephalitis. EMBO Mol Med 10:e8743. https://doi.org/10.15252/emmm.201708743

  31. Verma R, Cronin CG, Hudobenko J, Venna VR, McCullough LD, Liang BT (2017) Deletion of the P2X4 receptor is neuroprotective acutely, but induces a depressive phenotype during recovery from ischemic stroke. Brain Behav Immun 66:302–312. https://doi.org/10.1016/j.bbi.2017.07.155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rana I, Badoer E, Alahmadi E, Leo C, Woodman O, Stebbing M (2014) Microglia are selectively activated in endocrine and cardiovascular control centres in streptozotocin-induced diabetic rats. J Neuroendocrinol 26:413–425. https://doi.org/10.1111/jne.12161

    Article  CAS  PubMed  Google Scholar 

  33. Dhont TWL, Verbruggen A, Oostendorp RAB, Duquet W (1999) Pain threshold in patients with rheumatoid arthritis and effect of manual oscillations. Scand J Rheumatol 28:88–93. https://doi.org/10.1080/030097499442540

    Article  Google Scholar 

  34. Lee YC, Lu B, Edwards RR, Wasan AD, Nassikas NJ, Clauw DJ, Solomon DH, Karlson EW (2013) The role of sleep problems in central pain processing in rheumatoid arthritis. Arthritis Rheum 65:59–68. https://doi.org/10.1002/art.37733

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wendler J, Hummel T, Reissinger M, Manger B, Pauli E, Kalden JR, Kobal G (2001) Patients with rheumatoid arthritis adapt differently to repetitive painful stimuli compared to healthy controls. J Clin Neurosci 8:272–277. https://doi.org/10.1054/jocn.1999.0775

    Article  CAS  PubMed  Google Scholar 

  36. Gerecz-Simon EM, Tunks ER, Heale JA, Kean WF, Buchanan WW (1989) Measurement of pain threshold in patients with rheumatoid arthritis, ankylosing spondylitis, and healthy controls. Clin Rheumatol 8:467–474. https://doi.org/10.1007/BF02032098

    Article  CAS  PubMed  Google Scholar 

  37. Schaible H-G, Ebersberger A, Von Banchet GS (2002) Mechanisms of pain in arthritis. Ann N Y Acad Sci 966:343–354. https://doi.org/10.1111/j.1749-6632.2002.tb04234.x

    Article  CAS  PubMed  Google Scholar 

  38. Leffler A-S, Kosek E, Lerndal T, Nordmark B, Hansson P (2002) Somatosensory perception and function of diffuse noxious inhibitory controls (DNIC) in patients suffering from rheumatoid arthritis. Eur J Pain 6:161–176. https://doi.org/10.1053/eujp.2001.0313

    Article  PubMed  Google Scholar 

  39. Duris FH, Fava RA, Noelle RJ (1994) Collagen-induced arthritis as a model of rheumatoid arthritis. J Clin Immunol 73:11–18. https://doi.org/10.1006/clin.1994.1164

    Article  Google Scholar 

  40. Billiau A, Matthys P (2001) Modes of action of Freund’s adjuvants in experimental models of autoimmune diseases. J Leukoc Biol 70:849–860. https://doi.org/10.1189/jlb.70.6.849

    Article  CAS  PubMed  Google Scholar 

  41. Tsuda M, Kuboyama K, Inoue T, Nagata K, Tozaki-Saitoh H, Inoue K (2009) Behavioral phenotypes of mice lacking purinergic P2X4 receptors in acute and chronic pain assays. Mol Pain 5(1744-8069):5–28. https://doi.org/10.1186/1744-8069-5-28

    Article  CAS  Google Scholar 

  42. Chen X-M, Xu J, Song J-G, Zheng B-J, Wang X-R (2015) Electroacupuncture inhibits excessive interferon-γ evoked up-regulation of P2X4 receptor in spinal microglia in a CCI rat model for neuropathic pain. Br J Anaesth 114:150–157. https://doi.org/10.1093/bja/aeu199

    Article  CAS  PubMed  Google Scholar 

  43. Lyness WH, Smith FL, Heavner JE, Iacono CU, Garvin RD (1989) Morphine self-administration in the rat during adjuvant-induced arthritis. Life Sci 45:2217–2224. https://doi.org/10.1016/0024-3205(89)90062-3

    Article  CAS  PubMed  Google Scholar 

  44. Park EH, Kahng JH (1999) Suppressive effects of propolis in rat adjuvant arthritis. Arch Pharm Res 22:554–558. https://doi.org/10.1007/BF02975325

    Article  CAS  PubMed  Google Scholar 

  45. Liu Y-L, Lin H-M, Rong Z, Wu J-C, Han R, Raymond LN, Reid RF, Qin Z-H (2009) Suppression of complete Freund’s adjuvant-induced adjuvant arthritis by cobratoxin. Acta Pharmacol Sin 30:219–227. https://doi.org/10.1038/aps.2008.20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mahdi HJ, Khan NAK, Asmawi MZ, Mahmud R, Vikneswaran A, Murugaiyah L (2018) In vivo anti-arthritic and anti-nociceptive effects of ethanol extract of Moringa oleifera leaves on complete Freund’s adjuvant (CFA)-induced arthritis in rats. Integr Med Res 7:85–94. https://doi.org/10.1016/j.imr.2017.11.002

    Article  PubMed  Google Scholar 

  47. Horvath RJ, De Leo JA (2009) Morphine enhances microglial migration through modulation of P2X4 receptor signaling. J Neurosci 29:998–1005. https://doi.org/10.1523/JNEUROSCI.4595-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dewangan AK, Perumal Y, Pavurala N, Chopra K, Mazumder S (2017) Preparation, characterization and anti-inflammatory effects of curcumin loaded carboxymethyl cellulose acetate butyrate nanoparticles on adjuvant induced arthritis in rats. J Drug Deliv Sci Technol 41:269–279. https://doi.org/10.1016/j.jddst.2017.07.022

    Article  CAS  Google Scholar 

  49. Cook CD, Moore KI (2006) Effects of sex, hindpaw injection site and stimulus modality on nociceptive sensitivity in arthritic rats. Physiol Behav 87:552–562. https://doi.org/10.1016/j.physbeh.2005.12.005

    Article  CAS  PubMed  Google Scholar 

  50. Smith FL, Ken F, Lowe J, Welch SP (1998) Characterization of Δ9-tetrahydrocannabinol and anandamide antinociception in nonarthritic and arthritic rats. Pharmacol Biochem Behav 60:183–191. https://doi.org/10.1016/S0091-3057(97)00583-2

    Article  CAS  PubMed  Google Scholar 

  51. Guo L-H, Trautmann K, Schluesener HJ (2005) Expression of P2X4 receptor by lesional activated microglia during formalin-induced inflammatory pain. J Neuroimmunol 163:120–127. https://doi.org/10.1016/j.jneuroim.2005.03.007

    Article  CAS  PubMed  Google Scholar 

  52. Majdal HM, Sulaiman SM, Sulaiman ME (2012) Nerve conduction and electromyography in rheumatoid arthritis patients: a case-control study. Ann Coll Med Mosul 38:44–51

    Article  Google Scholar 

  53. Bo X, Kim M, Nori SL, Schoepfer R, Burnstock G, North RA (2003) Tissue distribution of P2X 4 receptors studied with an ectodomain antibody. Cell Tissue Res 313:159–165. https://doi.org/10.1007/s00441-003-0758-5

    Article  CAS  PubMed  Google Scholar 

  54. Ulmann L, Hirbec H, Rassendren F (2010) P2X4 receptors mediate PGE2 release by tissue-resident macrophages and initiate inflammatory pain. EMBO J 29:2290–2300. https://doi.org/10.1038/emboj.2010.126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ying M, Liu H, Zhang T, Jiang C, Gong Y, Wu B, Zou L, Yi Z, Rao S, Li G (2017) Effect of artemisinin on neuropathic pain mediated by P2X4 receptor in dorsal root ganglia. Neurochem Int 108:27–33. https://doi.org/10.1016/j.neuint.2017.02.004

    Article  CAS  PubMed  Google Scholar 

  56. Williams WA, Linley JE, Jones CA, Shibata Y, Snijder A, Button J, Hatcher JP, Huang L, Taddese B, Thornton P (2019) Antibodies binding the head domain of P2X4 inhibit channel function and reverse neuropathic pain. Pain 160:1989–2003. https://doi.org/10.1097/j.pain.0000000000001587

    Article  CAS  PubMed  Google Scholar 

  57. Teixeira JM, Dos Santos GG, Neves AF, Athie MCP, Bonet IJM, Nishijima CM, Farias FH, Figueiredo JG, Hernandez-Olmos V, Alshaibani S (2019) Diabetes-induced neuropathic mechanical hyperalgesia depends on P2X4 receptor activation in dorsal root ganglia. Neuroscience 398:158–170. https://doi.org/10.1016/j.neuroscience.2018.12.003

    Article  CAS  PubMed  Google Scholar 

  58. Pan B, Zhang Z, Chao D, Hogan QH (2018) Dorsal root ganglion field stimulation prevents inflammation and joint damage in a rat model of rheumatoid arthritis. Neuromodulation. 21:247–253. https://doi.org/10.1111/ner.12648

    Article  PubMed  Google Scholar 

  59. Kerschensteiner M, Gallmeier E, Behrens L, Leal VV, Hoppe E, Oropeza-Wekerle RL, Bartke I, Stadelmann C, Lassmann H, Wekerle H, Hohlfeld (1999) Activated human T cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lessions: a neuroprotective rol of inflammation? J Exp Med 189:865–870. https://doi.org/10.1084/jem.189.5.865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Klein K, Aeschlimann A, Jordan S, Gay R, Gay S, Sprott H (2012) ATP induced brain-derived neurotrophic factor expression and release from osteoarthritis synovial fibroblasts is mediated by purinergic receptor P2X4. PLoS One 7:e36693. https://doi.org/10.1371/journal.pone.0036693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schulte-Herbrüggen O, Nassenstein C, Lommatzsch M, Quarcoo D, Renz H, Braun A (2005) Tumor necrosis factor-α and interleukin-6 regulate secretion of brain-derived neurotrophic factor in human monocytes. J Neuroimmunol 160:204–209. https://doi.org/10.1016/j.jneuroim.2004.10.026

    Article  CAS  PubMed  Google Scholar 

  62. Kawanokuchi J, Shimizu K, Nitta A, Yamada K, Mizuno T, Takeuchi H, Suzumura A (2008) Production and functions of IL-17 in microglia. J Neuroimmunol 194:54–61. https://doi.org/10.1016/j.jneuroim.2007.11.006

    Article  CAS  PubMed  Google Scholar 

  63. Trang T, Beggs S, Wan X, Salter MW (2009) P2X4-receptor-mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation. J Neuro-Oncol 29:3518–3528. https://doi.org/10.1523/JNEUROSCI.5714-08.2009

    Article  CAS  Google Scholar 

  64. Li F, Guo N, Ma Y, Ning B, Wang Y, Kou L (2014) Inhibition of P2X4 suppresses joint inflammation and damage in collagen-induced arthritis. Inflammation 37:146–153. https://doi.org/10.1007/s10753-013-9723-y

    Article  CAS  PubMed  Google Scholar 

  65. Lalisse S, Hua J, Lenoir M, Linkc N, Rassendren F, Ulmann L (2018) Sensory neuronal P2RX4 receptors controls BDNF signaling in inflammatory pain. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-19301-5

    Article  CAS  Google Scholar 

  66. Kawano A, Tsukimoto M, Mori D, Noguchi T, Harada H, Takenouchi T, Kitani H, Kojima S (2012) Regulation of P2X7-dependent inflammatory functions by P2X4 receptor in mouse macrophages. Biochem Biophys Res Commun 420:102–107. https://doi.org/10.1016/j.bbrc.2012.02.122

    Article  CAS  PubMed  Google Scholar 

  67. Liu S, Liu Y-P, Huang Y-K, Zhang Y-K, Song AA, Ma P-C, Song X-J (2015) Wnt/Ryk signaling contributes to neuropathic pain by regulating sensory neuron excitability and spinal synaptic plasticity in rats. Pain 156:2572–2584. https://doi.org/10.1097/j.pain.0000000000000366

    Article  CAS  PubMed  Google Scholar 

  68. Sim JA, Chaumont S, Jo J, Ulmann L, Young MT, Cho K, Buell G, North RA, Rassendren F (2006) Altered hippocampal synaptic potentiation in P2X4 knock-out mice. J Neurosci 26:9006–9009. https://doi.org/10.1523/JNEUROSCI.2370-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chun BJ, Stewart BD, Vaughan DD, Bachstetter AD, Kekenes-Huskey PM (2019) Simulation of P2X-mediated calcium signalling in microglia. J Physiol 597:799–818. https://doi.org/10.1113/JP277377

    Article  CAS  PubMed  Google Scholar 

  70. Liu C, Zhang Y, Liu Q, Jiang L, Li M, Wang S, Long T, He W, Kong X, Qin G (2018) P2X4-receptor participates in EAAT3 regulation via BDNF-TrkB signaling in a model of trigeminal allodynia. Mol Pain 14:1744806918795930. https://doi.org/10.1177/1744806918795930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Deng Z, Li C, Liu C, Du E, Xu C (2018) Catestatin is involved in neuropathic pain mediated by purinergic receptor P2X4 in the spinal microglia of rats. Brain Res Bull 142:138–146. https://doi.org/10.1016/j.brainresbull.2018.07.003

    Article  CAS  PubMed  Google Scholar 

  72. Egger M, Beer AGE, Theurl M, Schgoer W, Hotter B, Tatarczyk T, Vasiljevic D, Frauscher S, Marksteiner J, Patsch JR (2008) Monocyte migration: a novel effect and signaling pathways of catestatin. Eur J Pharmacol 598:104–111. https://doi.org/10.1016/j.ejphar.2008.09.016

    Article  CAS  PubMed  Google Scholar 

  73. Sweitzer SM, Hickey WF, Rutkowski MD, Pahl JL, DeLeo JA (2002) Focal peripheral nerve injury induces leukocyte trafficking into the central nervous system: potential relationship to neuropathic pain. Pain 100:163–170. https://doi.org/10.1016/S0304-3959(02)00257-9

    Article  PubMed  Google Scholar 

  74. Ji R-R, Berta T, Nedergaard M (2013) Glia and pain: is chronic pain a gliopathy? Pain 154:S10–S28. https://doi.org/10.1016/j.pain.2013.06.022

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chu Y-X, Zhang Y-Q, Zhao Z-Q (2012) Involvement of microglia and interleukin-18 in the induction of long-term potentiation of spinal nociceptive responses induced by tetanic sciatic stimulation. Neurosci Bull 28:49–60

    Article  CAS  Google Scholar 

  76. Sommer C, Schäfers M, Marziniak M, Toyka KV (2008) Etanercept reduces hyperalgesia in experimental painful neuropathy. J Peripher Nerv Syst 6:67–72. https://doi.org/10.1111/j.1529-8027.2001.01010.x

    Article  Google Scholar 

  77. Rubio ME, Soto F (2001) Distinct localization of P2X receptors at excitatory postsynaptic specializations. J Neurosci 21:641–653. https://doi.org/10.1523/JNEUROSCI.21-02-00641.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Soto F, Garcia-Guzman M, Gomez-Hernandez JM, Holmann M, Karschin C, Stühmer W (1996) P2X4: an ATP-activated ionotropic receptor cloned from rat brain. Proc Natl Acad Sci U S A 93:3684–3688. https://doi.org/10.1073/pnas.93.8.3684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Franklin KM, Asatryan L, Jakowec MW, Trudell JR, Bell RL, Davies DL (2014) P2X4 receptors (P2X4Rs) represent a novel target for the development of drugs to prevent and/or treat alcohol use disorders. Front Neurosci 8. https://doi.org/10.3389/fnins.2014.00176

  80. Tsuda M, Masuda T, Tozaki-Saitoh H, Inoue K (2013) P2X4 Receptors and neuropathic pain. front cell neurosci. https://doi.org/10.3389/fncel.2013.00191

  81. Amadio S, Montilli C, Picconi B, Calabresi P, Volonté C (2007) Mapping P2X and P2Y receptor proteins in striatum and substantia nigra: an immunohistological study. Purinergic Signal 3:389–398. https://doi.org/10.1007/s11302-007-9069-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Stojilkovic SS (2009) Purinergic regulation of hypothalamopituitary functions. Trends Endocrinol Metab 20:460–468. https://doi.org/10.1016/j.tem.2009.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kru gel U, Spies O, Regenthal R, Illes P, Kittner H (2004) P2 receptors are involved in the mediation of motivation-related behaviour. Purinergic Signal 1:21–29. https://doi.org/10.1007/s11302-004-4745-4

    Article  Google Scholar 

  84. Kru gel U, Kittner H, Franke H, Illes P (2003) Purinergic modulation of neuronal activity in the mesolimbic dopaminergic system in vivo. Synapse 47:134–142. https://doi.org/10.1002/syn.10162

    Article  CAS  Google Scholar 

  85. Khoja S, Shah V, Garcia D, Asatryan L, Jakowec MW, Davies DL (2016) Role of purinergic P2X4 receptors in regulating striatal dopamine homeostasis and dependent behaviours. J Neurochem 139:134–148. https://doi.org/10.1111/jnc.13734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen G, Zhang Y-Q, Qadri YJ, Serhan CN, Ji R-R (2018) Microglia in pain: detrimental and protective roles in pathogenesis and resolution of pain. Neuron 100:1292–1311. https://doi.org/10.1016/j.neuron.2018.11.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Linos A, Worthington JW, O’Fallon WM, Kurland LT (1980) The epidemiology of rheumatoid arthritis in Rochester, Minnesota: a study of incidence, prevalence and mortality. Am J Epidemiol 111:87–98. https://doi.org/10.1093/oxfordjournals.aje.a112878

    Article  CAS  PubMed  Google Scholar 

  88. Smith JA, Das A, Butler JT, Ray SK, Banik NL (2011) Estrogen or estrogen receptor agonist inhibits lipopolysaccharide-induced microglial activation and death. Neurochem Res 36:1587–1593. https://doi.org/10.1007/s11064-010-0336-7

    Article  CAS  PubMed  Google Scholar 

  89. Vacca V, Marinelli S, Pieroni L, Urbani A, Luvisetto S, Pavone F (2016) 17β-estradiol counteracts neuropathic pain: a behavioural, immunohistochemical and proteomic investigation on sex-related differences in mice. Sci Rep 6:18980. https://doi.org/10.1038/srep18980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sorge RE, Mapplebeck JC, Rosen S, Beggs S, Taves S, Alexander JK, Martin LJ, Austin JS, Sotocinal SG, Chen D, Yang M, Shi XQ, Huang H, Pillon NJ, Bilan PJ, Tu Y, Klip A, Ji RR, Zhang J, Salter MW, Mogil JS (2015) Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat Neurosci 18:1081–1083. https://doi.org/10.1038/nn.4053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mapplebeck JCS, Dalgarno R, Tu Y, Moriarty O, Beggs S, Kwok CHT, Halievski K, Assi S, Mogil JS, Trang T, Salter MW (2018) Microglial P2X4R-evoked pain hypersensitivity is sexually dimorphic in rats. Pain 159:1752–1763. https://doi.org/10.1097/j.pain.0000000000001265

    Article  CAS  PubMed  Google Scholar 

  92. Lambrecht G (2000) Agonists and antagonists acting at P2X receptors: selectivity profiles and functional implications. Naunyn Schmiedeberg's Arch Pharmacol 362:340–350. https://doi.org/10.1007/s002100000312

    Article  CAS  Google Scholar 

  93. Buell G, Lewis C, Collo G, North RA, Surprenant A (1996) An antagonist-insensitive P2X receptor expressed in epithelia and brain. EMBO J 15:55–62. https://doi.org/10.1002/j.1460-2075.1996.tb00333.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic S (2011) Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 63:641–683. https://doi.org/10.1124/pr.110.003129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nagata K, Imai T, Yamashita T, Tsuda M, Tozaki-Saitoh H, Inoue K (2009) Antidepressants inhibit P2X4 receptor function: a possible involvement in neuropathic pain relief. Mol Pain 5(1744-8069):5–20. https://doi.org/10.1186/1744-8069-5-20

    Article  CAS  Google Scholar 

  96. Zarei M, Sabetkasei M, Zanjani TM (2014) Paroxetine attenuates the development and existing pain in a rat model of neurophatic pain. Iran Biomed J 18:94–100. https://doi.org/10.6091/ibj.1282.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hernandez-Olmos V, Abdelrahman A, El-Tayeb A, Freudendahl D, Weinhausen S, Müller CE (2012) N-substituted phenoxazine and acridone derivatives: structure–activity relationships of potent P2X4 receptor antagonists. J Med Chem 55:9576–9588. https://doi.org/10.1021/jm300845v

    Article  CAS  PubMed  Google Scholar 

  98. Ase AR, Honson NS, Zaghdane H, Pfeifer TA, Séguéla P (2015) Identification and characterization of a selective allosteric antagonist of human P2X4 receptor channels. Mol Pharmacol 87:606–616. https://doi.org/10.1124/mol.114.096222

    Article  CAS  PubMed  Google Scholar 

  99. Long T, He W, Pan Q, Zhang S, Zhang D, Qin G, Chen L, Zhou J (2020) Microglia P2X4R-BDNF signalling contributes to central sensitization in a recurrent nitroglycerin-induced chronic migraine model. J Headache Pain 21:1–17. https://doi.org/10.1186/s10194-019-1070-4

    Article  CAS  Google Scholar 

  100. Layhadi JA, Turner J, Crossman D, Fountain SJ (2018) ATP evokes Ca2+ responses and CXCL5 secretion via P2X4 receptor activation in human monocyte-derived macrophages. J Immunol 200:1159–1168. https://doi.org/10.4049/jimmunol.1700965

    Article  CAS  PubMed  Google Scholar 

  101. Jurga AM, Piotrowska A, Starnowska J, Rojewska E, Makuch W, Mika J (2016) Treatment with a carbon monoxide-releasing molecule (CORM-2) inhibits neuropathic pain and enhances opioid effectiveness in rats. Pharmacol Rep 68:206–213. https://doi.org/10.1016/j.pharep.2015.08.016

    Article  CAS  PubMed  Google Scholar 

  102. Jurga AM, Piotrowska A, Makuch W, Przewlocka B, Mika J (2017) Blockade of P2X4 receptors inhibits neuropathic pain-related behavior by preventing MMP-9 activation and, consequently, pronociceptive interleukin release in a rat model. Front Pharmacol. https://doi.org/10.3389/fphar.2017.00048

  103. Hervera A, Lea’nez S, Negrete R, Motterlini R, Pol O (2012) Carbon monoxide reduced neuropathic pain and spinal microglial actuvation by inhibiting nitric oxide synthesis in mice. PLoS One 7:1–10. https://doi.org/10.1186/1744-8069-9-16

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Ministry of Higher Education, Malaysia and Universiti Sains Malaysia under Fundamental Research Grant Scheme (203.PPSP.6171238) and Short Term Grant (304/PPSP/6315333).

Author information

Authors and Affiliations

Authors

Contributions

Khir NAM and Ismail CAN developed the contents and wrote the manuscript, Noh ASM prepared illustrations and did the search strings and Shafin N proofread and ensured the relevant flow of the manuscript.

Corresponding author

Correspondence to Che Aishah Nazariah Ismail.

Ethics declarations

Conflict of interest

Nurul Ajilah Mohamed Khir declares that she has no conflict of interest. Ain’ Sabreena Mohd Noh declares that she has no conflict of interest. Nazlahshaniza Shafin declares that she has no conflict of interest. Che Aishah Nazariah Ismail declares that she has no conflict of interest.

Ethical approval

Not applicable

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khir, N.A.M., Noh, A.S.M., Shafin, N. et al. Contribution of P2X4 receptor in pain associated with rheumatoid arthritis: a review. Purinergic Signalling 17, 201–213 (2021). https://doi.org/10.1007/s11302-021-09764-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-021-09764-z

Keywords

Navigation