Skip to main content
Log in

Fermentation of ginseng extracts by Penicillium simplicissimum GS33 and anti-ovarian cancer activity of fermented products

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A total of 58 isolates of β-glucosidase-producing microorganisms were isolated from soil around the wild ginseng roots under forest using Esculin-R2A agar. Among these isolates, strain GS33 showed a strong ability to convert ginsenosides Rb1, Rb2, Rc, and Rd into F2, Rg3, C-K, and convert ginsenoside Rg1 into Rh1, and F1. Fermented ginseng products can inhibit ES-2 cells growth and the IC50 value was 0.73 mg ml−1. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain GS33 belongs to the genus Penicillium and is most closely related to Penicillium simplicissimum (99 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bae EA, Park SY, Kim DH (2000) Constitutive β-glucosidases hydrolyzing ginsenoside Rb1 and Rb2 from human intestinal bacteria. Biol Pharm Bull 23(12):1481–1485

    Article  CAS  Google Scholar 

  • Cheng LQ, Na JR, Bang MH, Kim MK, Yang DC (2008) Conversion of major ginsenoside Rb1 to 20(S)-ginsenoside Rg3 by Microbacterium sp. GS514. Phytochemistry 69(1):218–224

    Article  CAS  Google Scholar 

  • Choi KT (2008) Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol Sin 29(9):1109–1118

    Article  CAS  Google Scholar 

  • Hasegawa H, Sung JH, Matsumiya S, Uchiyama M (1996) Main ginseng saponin metabolites formed by intestinal bacteria. Planta Med 62(5):453–457

    Article  CAS  Google Scholar 

  • Hou JG, Xue J, Wang C, Liu L, Zhang D, Wang Z, Li W, Zheng Y, Sung C (2012) Microbial transformation of ginsenoside Rg3 to ginsenoside Rh2 by Esteya vermicola CNU 120806. World J Microbiol Biotechnol 28(4):1807–1811

    Article  CAS  Google Scholar 

  • Karikura M, Miyase T, Tanizawa H, Taniyama T, Takino Y (1991) Studies on absorption, distribution, excretion and metabolism of ginseng saponins. VII. Comparison of the decomposition modes of ginsenoside Rb1 and Rb2 in digestive tract of rats. Chem Pharm Bull 39(9):2357–2361

    Article  CAS  Google Scholar 

  • Kim MK, Lee JW, Lee KY, Yang DC (2005) Microbial conversion of major ginsenoside Rb1 to pharmaceutically active minor ginsenoside Rd. J Microbiol 43(5):456–462

    CAS  Google Scholar 

  • Kim SH, Shin SW, Choi DS, Kim JH, Kown YB, Kown JK (2011) Modulation of LPS-stimulated astroglial activation by ginseng total saponins. J Ginseng Res 35(1):80–85

    Article  CAS  Google Scholar 

  • Kim JK, Cui CH, Yoon MH, Kim SC, Im WT (2012) Bioconversion of major ginsenosides Rg1 to minor ginsenoside F1 using novel recombinant ginsenoside hydrolyzing glycosidase cloned from Sanguibacter keddieii and enzyme characterization. J Biotechnol 161(3):294–301

    Article  CAS  Google Scholar 

  • Lee SY, Kim YK, Park NI, Kim CS, Lee CY, Park SU (2010) Chemical constituents and biological activities of the berry of Panax ginseng. J Med Plants Res 4(5):349–353

    CAS  Google Scholar 

  • Li PY, Liu JP, Lu D (2012) Standard NMR spectrum of ginsenosides. Chemical Industry Press, Beijing

    Google Scholar 

  • Liu JP, Lu D, Nicholson RC, Li PY, Wang F (2011a) Toxicity of a novel anti-tumor agent 20(S)-ginsenoside Rg3: a 26-week intramuscular repeated administration study in Beagle dogs. Food Chem Toxicol 49(8):1718–1727

    Article  CAS  Google Scholar 

  • Liu X, Qiao L, Xie D, Zhang Y, Zou J, Chen X, Dai J (2011b) Microbial transformation of ginsenoside-Rg1 by Absidia coerulea and the reversal activity of the metabolites towards multi-drug resistant tumor cells. Fitoterapia 82(8):1313–1317

    Article  CAS  Google Scholar 

  • Liu XK, Ye BJ, Wu Y, Lin ZH, Piao HR (2011c) Synthesis and anti-tumor evaluation of panaxadiol derivatives. Eur J Med Chem 46(6):1997–2002

    Article  CAS  Google Scholar 

  • Mai TT, Moon J, Song Y, Viet PQ, Phuc PV, Lee JM, Yi TH, Cho M, Cho SK (2012) Ginsenoside F2 induces apoptosis accompanied by protective autophagy in breast cancer stem cells. Cancer Lett 321(2):144–153

    Article  CAS  Google Scholar 

  • Park D, Yoon M (2012) Compound K, a novel ginsenoside metabolite, inhibits adipocyte differentiation in 3T3-L1 cells: involvement of angiogenesis and MMPs. Biochem Biophys Res Commun 422(2):263–267

    Article  CAS  Google Scholar 

  • Park SE, Park C, Kim SH, Hossain MA, Kim MY, Chung HY, Son WS, Kim GY, Choi YH, Kim ND (2009) Korean red ginseng extract induces apoptosis and decreases telomerase activity in human leukemia cells. J Ethnopharmacol 121(2):304–312

    Article  CAS  Google Scholar 

  • Paul S, Shin HB, Kang SC (2012) Inhibition of inflammations and macrophage activation by ginsenoside Re isolated from Korean ginseng (Panax ginseng C.A. Meyer). Food Chem Toxicol 50(5):1354–1361

    Article  CAS  Google Scholar 

  • Siegel R, Naishadham D, Jemal A (2012) Cancer statistics. CA Cancer J Clin 62(1):10–29

    Article  Google Scholar 

  • Voces J, Alvarez AI, Vila L, Ferrando A, Cabral de Oliveira C, Prieto JG (1999) Effects of administration of the standardized Panax ginseng extract G115 on hepatic antioxidant function after exhaustive exercise. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 123(2):175–184

    Article  CAS  Google Scholar 

  • Wang YZ, Chen J, Chu SF, Wang YS, Wang XY, Chen NH, Zhang JT (2009) Improvement of memory in mice and increase of hippocampal excitability in rats by ginsenoside Rg1’s metabolites ginsenoside Rh1 and protopanaxatriol. J Pharmacol Sci 109(4):504–510

    Article  CAS  Google Scholar 

  • Wang T, Yu X, Qu S, Xu H, Han B, Sui D (2010a) Effect of ginsenoside Rb3 on myocardial injury and heart function impairment induced by isoproterenol in rats. Eur J Pharmacol 636(1–3):121–125

    Article  CAS  Google Scholar 

  • Wang Y, Jiang RZ, Li GR, Chen YH, Luo HM, Gao Y, Gao QP (2010b) Structural and enhanced memory activity studies of extracts from Panax ginseng root. Food Chem 119(3):969–973

    Article  CAS  Google Scholar 

  • Wu LP, Jin Y, Yin CR (2012) Co-transformation of Panax major ginsenoside Rb1 and Rg1 to minor ginsenosides C-K and F1 by Cladosporium cladosporioides. J Ind Microbiol Biotechnol 39(4):521–527

    Article  CAS  Google Scholar 

  • Xiang YZ, Shang HC, Gao XM, Zhang BL (2008) A comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials. Phytother Res 22(7):851–858

    Article  Google Scholar 

  • Xie JT, Wang CZ, Wang AB, Wu J, Basila D, Yuan CS (2005) Antihyperglycemic effects of total ginsenosides from leaves and stem of Panax ginseng. Acta Pharmacol Sin 26(9):1104–1110

    Article  CAS  Google Scholar 

  • Ye L, Zhou CQ, Zhou W, Zhou P, Chen DF, Liu XH, Shi XL, Feng MQ (2010) Biotransformation of ginsenoside Rb1 to ginsenoside Rd by highly substrate-tolerant Paecilomyces bainier 229-7. Bioresour Technol 101(20):7872–7876

    Article  CAS  Google Scholar 

  • Yoon JH, Choi YJ, Lee SG (2012) Ginsenoside Rh1 suppresses matrix metalloproteinase-1 expression through inhibition of activator protein-1 and mitogen-activated protein kinase signaling pathway in human hepatocellular carcinoma cells. Eur J Pharmacol 679(1–3):24–33

    CAS  Google Scholar 

Download references

Acknowledgments

This work supported by Doctoral Fund of the Ministry of Education of China (No. 20112201110001) and the National Natural Science Foundation of China (No. 20862017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengri Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Y., Yin, Z., Wu, L. et al. Fermentation of ginseng extracts by Penicillium simplicissimum GS33 and anti-ovarian cancer activity of fermented products. World J Microbiol Biotechnol 30, 1019–1025 (2014). https://doi.org/10.1007/s11274-013-1520-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1520-0

Keywords

Navigation