Skip to main content

Advertisement

Log in

Cytomegalovirus microRNAs

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression at a post-transcriptional level in virtually all eukaryotic organisms and some viruses, particularly herpesviruses. miRNAs are non-immunogenic, stealthy tools for viruses to regulate their as well as host gene expression. The human cytomegalovirus (HCMV) is the major cause of morbidity in immunocompromised patients and allogenic bone-marrow or organ-transplant recipients and the leading cause of congenital birth defects. HCMV miRNAs may provide valuable targets for new urgently needed antiviral drugs. This review focuses on recent findings for viral miRNAs expressed by cytomegaloviruses (CMV) including data from human, chimpanzee, and murine CMV. These are discussed in the context of findings for other viruses to highlight potentially conserved roles exerted by viral miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. V. Ambros, The functions of animal microRNAs. Nature 431(7006), 350 (2004)

    Article  CAS  Google Scholar 

  2. E. Gottwein, B.R. Cullen, Viral and cellular microRNAs as determinants of viral pathogenesis and immunity. Cell Host Microbe 3(6), 375 (2008)

    Article  CAS  Google Scholar 

  3. D.P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2), 281 (2004)

    Article  CAS  Google Scholar 

  4. Y. Zeng, R. Yi, B.R. Cullen, MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc. Natl. Acad. Sci. U. S. A. 100(17), 9779 (2003)

    Article  CAS  Google Scholar 

  5. J.L. Umbach et al., MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454(7205), 780 (2008)

    Article  CAS  Google Scholar 

  6. P. Brodersen, L. Sakvarelidze-Achard, M. Bruun-Rasmussen, P. Dunoyer, Y.Y. Yamamoto, L. Sieburth, O. Voinnet, Widespread translational inhibition by plant miRNAs and siRNAs. Science 320, 1185–1190 (2008)

    Article  CAS  Google Scholar 

  7. B.P. Lewis, C.B. Burge, D.P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1), 15 (2005)

    Article  CAS  Google Scholar 

  8. D. Baek et al., The impact of microRNAs on protein output. Nature 455(7209), 64 (2008)

    Article  CAS  Google Scholar 

  9. M. Selbach et al., Widespread changes in protein synthesis induced by microRNAs. Nature 455(7209), 58 (2008)

    Article  CAS  Google Scholar 

  10. M. Brengues, D. Teixeira, R. Parker, Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 310, 486–489 (2005)

    Article  CAS  Google Scholar 

  11. R.S. Pillai, S.N. Bhattacharyya, C.G. Artus, T. Zoller, N. Cougot, E. Basyuk, E. Bertrand, W. Filipowicz, Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309, 1573–1576 (2005)

    Article  CAS  Google Scholar 

  12. S.N. Bhattacharyya et al., Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125(6), 1111 (2006)

    Article  CAS  Google Scholar 

  13. A.S. Flynt, E.C. Lai, Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat. Rev. Genet. 9(11), 831 (2008)

    Article  CAS  Google Scholar 

  14. S.W. Ding, O. Voinnet, Antiviral immunity directed by small RNAs. Cell 130(3), 413 (2007)

    Article  CAS  Google Scholar 

  15. X.H. Wang, R. Aliyari, W.X. Li, H.W. Li, K. Kim, R. Carthew, P. Atkinson, S.W. Ding, RNA interference directs innate immunity against viruses in adult Drosophila. Science 312, 452–454 (2006)

    Article  CAS  Google Scholar 

  16. O. Takeuchi, S. Akira, Recognition of viruses by innate immunity. Immunol. Rev. 220, 214 (2007)

    Article  CAS  Google Scholar 

  17. C.H. Lecellier, P. Dunoyer, K. Arar, J. Lehmann-Che, S. Eyquem, C. Himber, A. Saib, O. Voinnet, A cellular microRNA mediates antiviral defense in human cells. Science 308, 557–560 (2005)

    Article  CAS  Google Scholar 

  18. J. Huang et al., Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat. Med. 13(10), 1241 (2007)

    Article  CAS  Google Scholar 

  19. I.M. Pedersen et al., Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 449(7164), 919 (2007)

    Article  CAS  Google Scholar 

  20. M. Otsuka et al., Hypersusceptibility to vesicular stomatitis virus infection in Dicer1-deficient mice is due to impaired miR24 and miR93 expression. Immunity 27(1), 123 (2007)

    Article  CAS  Google Scholar 

  21. F.Z. Wang et al., Human cytomegalovirus infection alters the expression of cellular microRNA species that affect its replication. J. Virol. 82(18), 9065 (2008)

    Article  CAS  Google Scholar 

  22. W. de Vries, B. Berkhout, RNAi suppressors encoded by pathogenic human viruses. Int. J. Biochem. Cell Biol. 40(10), 2007 (2008)

    Article  Google Scholar 

  23. S. Pfeffer, M. Zavolan, F.A. Grasser, M. Chien, J.J. Russo, J. Ju, B. John, A.J. Enright, D. Marks, C. Sander, T. Tuschl, Identification of virus-encoded microRNAs. Science 304, 734–736 (2004)

    Article  CAS  Google Scholar 

  24. S. Pfeffer et al., Identification of microRNAs of the herpesvirus family. Nat. Methods 2(4), 269 (2005)

    Article  CAS  Google Scholar 

  25. S. Tang et al., An acutely and latently expressed herpes simplex virus 2 viral microRNA inhibits expression of ICP345, a viral neurovirulence factor. Proc. Natl. Acad. Sci. U. S. A. 105(31), 10931 (2008)

    Article  CAS  Google Scholar 

  26. F. Grey et al., Identification and characterization of human cytomegalovirus-encoded microRNAs. J. Virol. 79(18), 12095 (2005)

    Article  CAS  Google Scholar 

  27. L. Dolken et al., Mouse cytomegalovirus microRNAs dominate the cellular small RNA profile during lytic infection and show features of posttranscriptional regulation. J. Virol. 81(24), 13771 (2007)

    Article  Google Scholar 

  28. Y. Yao et al., Marek’s disease virus type 2 (MDV-2)-encoded microRNAs show no sequence conservation with those encoded by MDV-1. J. Virol. 81(13), 7164 (2007)

    Article  CAS  Google Scholar 

  29. X. Cai et al., Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog. 2(3), 23 (2006)

    Article  Google Scholar 

  30. W. Dunn et al., Human cytomegalovirus expresses novel microRNAs during productive viral infection. Cell Microbiol. 7(11), 1684 (2005)

    Article  CAS  Google Scholar 

  31. C.Z. Chen, L. Li, H.F. Lodish, D.P. Bartel, MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83–86 (2004)

    Article  CAS  Google Scholar 

  32. A.H. Buck et al., Discrete clusters of virus-encoded micrornas are associated with complementary strands of the genome and the 72-kilobase stable intron in murine cytomegalovirus. J. Virol. 81(24), 13761 (2007)

    Article  CAS  Google Scholar 

  33. A. Grundhoff, C.S. Sullivan, D. Ganem, A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA 12(5), 733 (2006)

    Article  CAS  Google Scholar 

  34. S. Tang, A. Patel, P.R. Krause, Novel less-abundant viral miRNAs encoded by herpes simplex virus 2 latency-associated transcript and their roles in regulating ICP34.5 and ICP0 mRNAs. J. Virol. 83(3), 1433–1442 (2008)

    Article  Google Scholar 

  35. X. Cai et al., Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc. Natl. Acad. Sci. U. S. A. 102(15), 5570 (2005)

    Article  CAS  Google Scholar 

  36. D.M. Tyler et al., Functionally distinct regulatory RNAs generated by bidirectional transcription and processing of microRNA loci. Genes Dev. 22(1), 26 (2008)

    Article  CAS  Google Scholar 

  37. A. Stark et al., A single Hox locus in Drosophila produces functional microRNAs from opposite DNA strands. Genes Dev. 22(1), 8 (2008)

    Article  CAS  Google Scholar 

  38. P. Landgraf et al., A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7), 1401 (2007)

    Article  CAS  Google Scholar 

  39. J. Li et al., Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr. Biol. 15(16), 1501 (2005)

    Article  CAS  Google Scholar 

  40. Y. Kirino, Z. Mourelatos, 2′-O-methyl modification in mouse piRNAs and its methylase. Nucleic Acids Symp. Ser. (Oxf). 51, 417–418 (2007)

    Article  Google Scholar 

  41. C.A. Kulesza, T. Shenk, Murine cytomegalovirus encodes a stable intron that facilitates persistent replication in the mouse. Proc. Natl. Acad. Sci. U. S. A. 103(48), 18302 (2006)

    Article  CAS  Google Scholar 

  42. D.P. Bartel, C.Z. Chen, Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat. Rev. Genet. 5(5), 396 (2004)

    Article  CAS  Google Scholar 

  43. F. Grey et al., A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication. PLoS Pathog. 3(11), e163 (2007)

    Article  Google Scholar 

  44. E. Murphy et al., Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: implications for latency. Proc. Natl. Acad. Sci. U. S. A. 105(14), 5453 (2008)

    Article  CAS  Google Scholar 

  45. T.W. Hermiston et al., Identification and characterization of the human cytomegalovirus immediate-early region 2 gene that stimulates gene expression from an inducible promoter. J. Virol. 61(10), 3214 (1987)

    CAS  PubMed  PubMed Central  Google Scholar 

  46. R.F. Greaves, E.S. Mocarski, Defective growth correlates with reduced accumulation of a viral DNA replication protein after low-multiplicity infection by a human cytomegalovirus ie1 mutant. J. Virol. 72(1), 366 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  47. E.S. Mocarski et al., A deletion mutant in the human cytomegalovirus gene encoding IE1(491aa) is replication defective due to a failure in autoregulation. Proc. Natl. Acad. Sci. U. S. A. 93(21), 11321 (1996)

    Article  CAS  Google Scholar 

  48. G.J. Seo, L.H. Fink, B. O'Hara, W.J. Atwood, C.S. Sullivan, Evolutionary conserved function of a viral microRNA. J. Virol. 82(20), 9823–9828 (2008)

    Article  CAS  Google Scholar 

  49. C.S. Sullivan et al., SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435(7042), 682 (2005)

    Article  CAS  Google Scholar 

  50. N. Stern-Ginossar, N. Elefant, A. Zimmermann, D.G. Wolf, N. Saleh, M. Biton, E. Horwitz, Z. Prokocimer, M. Prichard, G. Hahn, D. Goldman-Wohl, C. Greenfield, S. Yagel, H. Hengel, Y. Altuvia, H. Margalit, O. Mandelboim, Host immune system gene targeting by a viral miRNA. Science 317, 376–381 (2007)

    Article  CAS  Google Scholar 

  51. G.W. Wilkinson et al., Modulation of natural killer cells by human cytomegalovirus. J. Clin. Virol. 41(3), 206 (2008)

    Article  CAS  Google Scholar 

  52. C. Dunn et al., Human cytomegalovirus glycoprotein UL16 causes intracellular sequestration of NKG2D ligands, protecting against natural killer cell cytotoxicity. J. Exp. Med. 197(11), 1427 (2003)

    Article  CAS  Google Scholar 

  53. E. Gottwein et al., A viral microRNA functions as an orthologue of cellular miR-155. Nature 450(7172), 1096 (2007)

    Article  CAS  Google Scholar 

  54. R.L. Skalsky et al., Kaposi’s sarcoma-associated herpesvirus encodes an ortholog of miR-155. J. Virol. 81(23), 12836 (2007)

    Article  CAS  Google Scholar 

  55. Y. Zhao et al., A functional MicroRNA-155 ortholog encoded by the oncogenic Marek’s disease virus. J. Virol. 83(1), 489 (2009)

    Article  CAS  Google Scholar 

  56. N. Stern-Ginossar et al., Human microRNAs regulate stress-induced immune responses mediated by the receptor NKG2D. Nat. Immunol. 9(9), 1065 (2008)

    Article  CAS  Google Scholar 

  57. J.M. Ziegelbauer, C.S. Sullivan, D. Ganem, Tandem array-based expression screens identify host mRNA targets of virus-encoded microRNAs. Nat. Genet. 41(1), 130 (2009)

    Article  CAS  Google Scholar 

  58. M. Landthaler, D. Gaidatzis, A. Rothballer, P.Y. Chen, S.J. Soll, L. Dinic, T. Ojo, M. Hafner, M. Zavolan, T. Tuschl, Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA 14(12), 2580–2596 (2008)

    Article  Google Scholar 

  59. S. Rudel et al., A multifunctional human Argonaute2-specific monoclonal antibody. RNA 14(6), 1244 (2008)

    Article  Google Scholar 

  60. W.D. Rawlinson, H.E. Farrell, B.G. Barrell, Analysis of the complete DNA sequence of murine cytomegalovirus. J. Virol. 70(12), 8833 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  61. E.S. Mocarski, Virology, 3rd edn. (Lippincott-Raven Publishers, Philadelphia, PA, 1996), p. 2447

    Google Scholar 

  62. T.R. Jones, V.P. Muzithras, A cluster of dispensable genes within the human cytomegalovirus genome short component: IRS1, US1 through US5, and the US6 family. J. Virol. 66(4), 2541 (1992)

    CAS  PubMed  PubMed Central  Google Scholar 

  63. J. Chambers et al., DNA microarrays of the complex human cytomegalovirus genome: profiling kinetic class with drug sensitivity of viral gene expression. J. Virol. 73(7), 5757 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Dölken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dölken, L., Pfeffer, S. & Koszinowski, U.H. Cytomegalovirus microRNAs. Virus Genes 38, 355–364 (2009). https://doi.org/10.1007/s11262-009-0347-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-009-0347-0

Keywords

Navigation