Skip to main content

Advertisement

Log in

Critical evaluation of strategies for mineral fortification of staple food crops

  • Review
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Staple food crops, in particular cereal grains, are poor sources of key mineral nutrients. As a result, the world’s poorest people, generally those subsisting on a monotonous cereal diet, are also those most vulnerable to mineral deficiency diseases. Various strategies have been proposed to deal with micronutrient deficiencies including the provision of mineral supplements, the fortification of processed food, the biofortification of crop plants at source with mineral-rich fertilizers and the implementation of breeding programs and genetic engineering approaches to generate mineral-rich varieties of staple crops. This review provides a critical comparison of the strategies that have been developed to address deficiencies in five key mineral nutrients—iodine, iron, zinc, calcium and selenium—and discusses the most recent advances in genetic engineering to increase mineral levels and bioavailability in our most important staple food crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alavi S, Bugusu B, Cramer G et al (2008) Rice fortification in developing countries: A critical review of the technical and economic feasibility. Institute of Food Technologists, Washington DC

    Google Scholar 

  • Allen LH (2002) Iron supplements: scientific issues concerning efficacy and implications of research and programs. J Nutr 132:S813–S819

    Google Scholar 

  • Anzai H, Takaiwa F, Katsumata K (2000) Production of human lactoferrin in transgenic plants. In: Shimazaki K, Tsuda H, Tomita M, Kuwata T, Perraudin J (eds) Lactoferrin: structure, function and application. Elsevier, Amsterdam, pp 265–271

    Google Scholar 

  • Bauer P, Bereczky Z (2003) Gene networks involved in iron acquisition strategies in plants. Agronomie 23:447–454

    CAS  Google Scholar 

  • Bethell DR, Huang J (2004) Recombinant human lactoferrin treatment for global health issues: iron deficiency and acute diarrhea. Biometals 17:337–342

    CAS  PubMed  Google Scholar 

  • Black MM (2003a) The evidence linking zinc deficiency with children’s cognitive and motor functioning. J Nutr 133:S1473–S1476

    Google Scholar 

  • Black RE (2003b) Zinc deficiency, infectious disease and mortality in the developing world. J Nutr 133:S1485–S1489

    Google Scholar 

  • Blasco B, Rios JJ, Cervilla LM et al (2008) Iodine biofortification and antioxidant capacity of lettuce: potential benefits for cultivation and human health. Ann Appl Biol 152:289–299

    CAS  Google Scholar 

  • Brinch-Pedersen H, Hatzack F, Sørensen LD et al (2003) Concerted action of endogenous and heterologous phytase on phytic acid degradation in seed of transgenic wheat (Triticum aestivum L.). Transgenic Res 12:649–659

    CAS  PubMed  Google Scholar 

  • Brinch-Pedersen H, Hatzack F, Stöger E et al (2006) Heat-stable phytases in transgenic wheat (Triticum aestivum L.): deposition pattern, thermostability, and phytate hydroslysis. J Agric Food Chem 54:4624–4632

    CAS  PubMed  Google Scholar 

  • Broadley MR, White PJ, Bryson RJ et al (2006) Biofortification of UK food crops with selenium. Proc Nutr Soc 65:169–181

    CAS  PubMed  Google Scholar 

  • Buois HE (2002) Plant breeding: a new tool for fighting micronutrient malnutrition. J Nutr 132:491S–494S

    Google Scholar 

  • Buois HE, Chassy BM, Ochanda JO (2003) Genetically modified food crops and their contribution to human nutrition and food quality. Trends Food Sci Technol 14:191–209

    Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    CAS  Google Scholar 

  • Campos-Bowers MH, Wittenmyer BF (2007) Biofortification in China: policy and practice. Health Res Policy Sys 5:10–16

    Google Scholar 

  • Carvalho KM, Gallardo-Williams MT, Benson RF, Martin DF (2003) Effects of selenium supplementation on four agricultural crops. J Agric Food Chem 51:704–709

    CAS  PubMed  Google Scholar 

  • CDCP (Centers for Disease Control and Prevention) (2008) Trends in wheat-flour fortification with folic acid, iron. Worldwide, 2004 and 2007. MMWR 57:8–10

    Google Scholar 

  • Chen L, Yang F, Xu J et al (2002) Determination of selenium concentration of rice in China and effect of fertilization of selenite and selenate on selenium content of rice. J Agric Food Chem 50:5128–5130

    CAS  PubMed  Google Scholar 

  • Chen R, Xue G, Chen P et al (2008) Transgenic maize plants expressing a fungal phytase gene. Transgenic Res 17:633–643

    CAS  PubMed  Google Scholar 

  • Chong DK, Langridge WH (2000) Expression of full-length bioactive antimicrobial human lactoferrin in potato plants. Transgenic Res 9:71–78

    CAS  PubMed  Google Scholar 

  • Christou P, Twyman RM (2004) The potential of genetically enhanced plants to address food insecurity. Nutr Res Rev 17:23–42

    PubMed  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    CAS  PubMed  Google Scholar 

  • Combs GF (2001) Selenium in global food system. Br J Nutr 85:517–547

    CAS  PubMed  Google Scholar 

  • Connolly EL (2008) Raising the bar for biofortification: enhanced levels of bioavailable calcium in carrots. Trends Biotechnol 26:401–403

    CAS  PubMed  Google Scholar 

  • Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357

    CAS  PubMed  Google Scholar 

  • Dai JL, Zhu YG, Zhang M, Huang YZ (2004) Selecting iodine-enriched vegetables and the residual effect of iodate application to soil. Biol Trace Element Res 101:265–276

    CAS  Google Scholar 

  • Darnton-Hill I, Nalubola R (2002) Fortification strategies to meet micronutrient needs: successes and failures. Proc Nutr Soc 61:231–241

    CAS  PubMed  Google Scholar 

  • De Lorgeril M, Salen P (2006) Selenium and antioxidant defenses as major mediators in the development of chronic heart failure. Heart Fail Rev 11:13–17

    CAS  PubMed  Google Scholar 

  • Douchkov D, Gryczka C, Stephan UW et al (2005) Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco. Plant Cell Environ 28:365–374

    CAS  Google Scholar 

  • Drakakaki G, Marcel S, Glahn RP et al (2005) Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol Biol 59:869–880

    CAS  PubMed  Google Scholar 

  • Dunn JT (2003) Iodine should be routinely added to complementary foods. J Nut 133:3008S–3010S

    Google Scholar 

  • Eide DJ (2006) Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta 1763:711–722

    CAS  PubMed  Google Scholar 

  • FAO (1997) Preventing micronutrient malnutrition. A guide to food-based approaches. International Life Science Institute, Washington DC

    Google Scholar 

  • FAO (2000) Biotechnology in food and agriculture. FAO, Rome

    Google Scholar 

  • Frossard E, Bucher M, Machler F et al (2000) Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J Sci Food Agr 80:861–879

    CAS  Google Scholar 

  • Genc Y, Humphries JM, Lyons GH, Graham RD (2005) Exploiting genotypic variation in plant nutrient accumulation to alleviate micronutrient deficiency in populations. J Trace Element Med Biol 18:319–324

    CAS  Google Scholar 

  • Ghandilyan A, Vreugdenhil D, Aarts MGM (2006) Progress in the genetic understanding of plant iron and zinc nutrition. Physiol Plant 126:407–417

    CAS  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N et al (1999) Iron fortification of rice seeds by the soybean ferritin gene. Nature Biotechnol 17:282–286

    CAS  Google Scholar 

  • Graham RD (2003) Biofortification: a global challenge program. Int Rice Res Notes 28:4–8

    Google Scholar 

  • Graham R, Senadhira D, Beebe S et al (1999) Breeding for micronutrient density in edible portions of staple food crops: conventional approaches. Field Crops Res 60:57–80

    Google Scholar 

  • Graham RD, Welch RM, Bouis HE (2001) Addressing micornutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv Agron 70:77–142

    Google Scholar 

  • Gregorio GB (2002) Progress in breeding for trace minerals in staple crops. J Nutr 132:500S–502S

    PubMed  Google Scholar 

  • Haas JD, Beard JL, Murray-Kolb LE et al (2005) Iron-biofortified rice improves the iron stores of nonanemic Filipino women. J Nutr 135:2823–2830

    CAS  PubMed  Google Scholar 

  • Hong CL, Weng HX, Qin YC et al (2008) Transfer of iodine from soil to vegetables by applying exogenous iodine. Agron Sustain Dev 28:575–583

    CAS  Google Scholar 

  • Hong-Xia Y, Mei L, Ze-Jian G et al (2008) Evaluation and application of two high-iron transgenic rice lines expressing a pea ferritin gene. Rice Sci 15:51–56

    Google Scholar 

  • Horton S (2006) The economics of food fortification. J Nutr 136:1068–1071

    CAS  PubMed  Google Scholar 

  • Hotz C, Brown KH (2004) International Zinc Nutrition Consultative Group (IZiNCG). Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25:S91–S204

    Google Scholar 

  • Hunt JM (2002) Reversing productivity losses from iron deficiency: the economic case. J Nutr 132:S794

    Google Scholar 

  • Ishimaru Y, Suzuki M, Tsukamoto T et al (2006) Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J 45:335–346

    CAS  PubMed  Google Scholar 

  • IZINCG (2007) Technical Brief no 4: zinc fortification. Available at http://www.izincg.org/index.php. Accessed 30 Nov 2008

  • Jeong J, Guerinot ML (2008) Biofortified and bioavailable: the gold standard for plant-based diets. Proc Natl Acad Sci USA 105:1777–1778

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Nakanishi H, Takahashi M, et al (2008) Generation and field trials of transgenic rice tolerant to iron deficiency. Rice 1:144–153

    Google Scholar 

  • Lee MH, Hettiarachchy NS, McNew RW, Gnanasambandam R (1995) Physicochemical properties of calcium-fortified rice. Cereal Chem 72:352–355

    CAS  Google Scholar 

  • Liu QL, Xu XH, Ren XL et al (2007) Generation and characterization of low phytic acid germplasm in rice (Oryza sativa L.). Theor Appl Genet 114:803–814

    CAS  PubMed  Google Scholar 

  • Lucca P, Hurrell R, Potrykus I (2002) Fighting iron deficiency anemia with iron-rich rice. J Am Coll Nutr 21:184S–190S

    CAS  PubMed  Google Scholar 

  • Lyons GH, Lewis J, Lorimer MF et al (2004a) High-selenium wheat: agronomic biofortification strategies to improve human nutrition. Food Agric Environ 2:171–178

    Google Scholar 

  • Lyons GH, Stangoulis JCR, Graham RD (2004b) Exploiting micronutrient interaction to optimize biofortification programs: the case for inclusion of selenium and iodine in the HarvestPlus program. Nutr Rev 62:247–252

    PubMed  Google Scholar 

  • Lyons GH, Judson GJ, Ortiz-Monasterio I et al (2005) Selenium in Australia: selenium status and biofortification of wheat for better health. J Trace Element Med Biol 19:75–82

    CAS  Google Scholar 

  • Maier KJ, Nelson CR, Bailey FC et al (1998) Accumulation of selenium in aquatic biota of a watershed treated with seleniferous fertilizer. Bull Env Contam Tox 60:409–416

    CAS  Google Scholar 

  • Maret W, Sandstead H (2006) Zinc requirements and the risk and benefits of zinc supplementation. J Trace Element Med Biol 20:3–18

    CAS  Google Scholar 

  • Mason J, Deitchler M, Soekirman, Martorell R (2004) Successful micronutrient programs. Food Nutr Bull 25:1–102

  • Mehansho H (2006) Iron fortification technology development: new approaches. J Nutr 136:1059

    CAS  PubMed  Google Scholar 

  • Mei H, Zhao J, Pittman JK et al (2007) In planta regulation of the Arabidopsis Ca2+/H+ antiporter CAX1. J Exp Bot 58:3419–3427

    CAS  PubMed  Google Scholar 

  • Mori S (1999) Iron acquisition by plants. Curr Opin Plant Biol 2:250–253

    CAS  PubMed  Google Scholar 

  • Morris J, Nakata PA, McConn M et al (2007) Increased calcium bioavailability in mice fed genetically engineered plants lacking calcium oxalate. Plant Mol Biol 64:613–618

    CAS  PubMed  Google Scholar 

  • Muller O, Krawinkel M (2005) Malnutrition and health in developing countries. CMAJ 173:279–286

    PubMed  Google Scholar 

  • Murray-Kolb LE, Takaiwa F, Goto F et al (2002) Transgenic rice is a source of iron for iron-depleted rats. J Nutr 132:957–960

    CAS  PubMed  Google Scholar 

  • Nandi S, Suzuki YA, Huang J et al (2002) Expression of human lactoferrin in transgenic rice grains for the application in infant formula. Plant Sci 163:713–722

    CAS  Google Scholar 

  • Nantel G, Tontisirin K (2002) Policy and sustainability issues. J Nutr 132:S839–S844

    Google Scholar 

  • Nestel P, Buois HE, Meenakshi JV, Pfeiffer W (2006) Biofortification of staple food crops. J Nutr 136:1064–1067

    CAS  PubMed  Google Scholar 

  • Park S, Kim CK, Pike LM et al (2004) Increased calcium in carrots by expression of an Arabidopsis H+/Ca2+ transporter. Mol Breeding 14:275–282

    Google Scholar 

  • Park S, Kang TS, Kim CK et al (2005) Genetic manipulation for enhancing calcium content in potato tuber. J Agr Food Chem 53:5598–5603

    CAS  Google Scholar 

  • Park S, Elless MP, Park J, et al (2009) Sensory analysis of calcium-biofortified lettuce. Plant Biotechnol J 7(1):106–117

    Google Scholar 

  • Peleg Z, Saranga Y, Yazici A, et al (2008) Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. Plant Soil 306:57–67

    Google Scholar 

  • Pilon-Smits EAH, Hwang S, Lytle CM et al (1999) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction and tolerance. Plant Physiol 119:123–132

    CAS  PubMed  Google Scholar 

  • Qu LQ, Yoshihara T, Ooyama A et al (2005) Iron accumulation does not parallel the high expression level of ferritin in transgenic rice seeds. Planta 222:225–233

    CAS  Google Scholar 

  • Raboy V (2002) Progress in breeding low phytate crops. J Nutr 132:503S–505S

    PubMed  Google Scholar 

  • Ramessar K, Capell T, Twyman RM et al (2008a) Calling the tunes on transgenic crops—the case for regulatory harmony. Mol Breeding 23:99–112

    Google Scholar 

  • Ramessar K, Capell T, Twyman RM et al (2008b) Trace and traceability—a call for regulatory harmony. Nature Biotechnol 26:975–978

    CAS  Google Scholar 

  • Rayman MP (2002) The argument for increasing selenium intake. Proc Nutr Soc 61:203–215

    CAS  PubMed  Google Scholar 

  • Rengel Z, Batten GD, Crowley DE (1999) Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crops Res. 60:27–40

    Google Scholar 

  • Romanchik-Cerpovicz JE, McKemie RJ (2007) Fortification of all-purpose wheat-flour tortillas with calcium lactate, calcium carbonate, or calcium citrate is acceptable. J Am Dietetic Assoc 107:506–509

    CAS  Google Scholar 

  • Salmon V, Legrand D, Slomianny MC et al (1998) Production of human lactoferrin in transgenic tobacco plants. Protein Expr Purif 13:127–135

    CAS  PubMed  Google Scholar 

  • Schachtman DP, Barker SJ (1999) Molecular approaches for increasing the micronutrient density in edible portions of food crops. Field Crop Res 60:81–92

    Google Scholar 

  • Sheikholeslam R, Abdollahi Z, Haghighi FN (2004) Managing nutritional programmes in developing countries. Eastern Mediterr Health J 10:737–746

    CAS  Google Scholar 

  • Shrimpton R, Schultink W (2002) Can supplements help meet the micronutrient needs of the developing world? Proc Nutr Soc 61:223–229

    CAS  PubMed  Google Scholar 

  • Shrimpton R, Gross R, Darnton-Hill I, Young M (2005) Zinc deficiency: what are the most appropriate interventions? BMJ 330:347–349

    PubMed  Google Scholar 

  • Sivakumar B, Brahmam GNV, Madhavan Nair K et al (2001) Prospects of fortification of salt with iron and iodine. Br J Nutr 85:S167–S173

    CAS  PubMed  Google Scholar 

  • Sivakumar B, Nair KM, Sreeramulu D et al (2006) Effect of micronutrient supplement on health and nutritional status of schoolchildren: biochemical status. Nutrition 22:15S–25S

    Google Scholar 

  • Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86:373–389

    CAS  PubMed  Google Scholar 

  • Stein AJ, Meenakshi JV, Qaim M et al (2008) Potential impacts of iron biofortification in India. Social Sci Med 66:1797–1808

    Google Scholar 

  • Suzuki M, Takahashi M, Tsukamoto T et al (2006) Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J 48:85–97

    CAS  PubMed  Google Scholar 

  • Takahashi M (2003) Overcoming Fe deficiency by a transgenic approach in rice. Plant Cell Tiss Org Cult 72:211–220

    CAS  Google Scholar 

  • Takahashi M, Nakanishi H, Kawasaki S et al (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nature Biotechnol 19:466–469

    CAS  Google Scholar 

  • Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    CAS  PubMed  Google Scholar 

  • Theil EC, Briat JF (2004) Plant ferritin and non-heme iron nutrition in humans. In: HarvestPlus technical monographs 1. International Food Policy Research Institute and International Center for Tropical Agriculture (CIAT), Washington, DC and Cali

  • Timmer CP (2003) Biotechnology and food systems in developing countries. J Nutr 133:3319–3322

    CAS  PubMed  Google Scholar 

  • Underwood BA, Smitasiri S (1999) Micronutrient malnutrition: policies and programs for control and their implications. Annu Rev Nutr 19:303–324

    CAS  PubMed  Google Scholar 

  • UNICEF (2008) Sustainable elimination of iodine deficiency. UNICEF, New York

    Google Scholar 

  • van der Zaal BJ, Neuteboom LW, Pinas JE et al (1999) Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1055

    PubMed  Google Scholar 

  • Vasconcelos M, Datta K, Oliva N et al (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 164:371–378

    CAS  Google Scholar 

  • Vert G, Grotz N, Dédaldéchamp F et al (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233

    CAS  PubMed  Google Scholar 

  • Weaver CM (1998) Calcium in food fortification strategies. Int Dairy J 8:443–449

    CAS  Google Scholar 

  • Welch RM, Graham RD (2005) Agriculture: the real nexus for enhancing bioavailable micronutrients in food crops. J Trace Elements Med Biol 18:299–307

    CAS  Google Scholar 

  • Welch RM, House WA, Ortiz-Monasterio I, Cheng Z (2005) Potential for improving bioavailable zinc in wheat grain (Triticum species) through plant breeding. J Agirc Food Chem 53:2176–2180

    CAS  Google Scholar 

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:586–593

    PubMed  Google Scholar 

  • WHO (2004) Iodine status worldwide : WHO global database on iodine deficiency. WHO, Geneva

    Google Scholar 

  • WHO/FAO (1998) Vitamin and mineral requirements in human nutrition: report of a joint FAO/WHO expert consultation, 2nd edn. Bangkok, Thailand. 21–30 Sept 1998

  • WHO/UNICEF (2004) Joint statement: clinical management of acute diarrhea. Available at http://www.izincg.org/pdf/WHOUnicefdiarrheaStatementENGL.pdf. Accessed 30 Nov 2008

  • WHO/WFP/UNICEF (2007) Preventing and controlling micronutrient deficiencies in populations affected by an emergency. Joint statement by the World Health Organization, the World Food Programme and the United Nations Children’s Fund

  • Zhu C, Naqvi S, Gomez-Galera S et al (2007) Transgenic strategies for the nutritional enhancement of plants. Trends Plant Sci 12:548–555

    CAS  PubMed  Google Scholar 

  • Zhu C, Naqvi S, Breitenbach J et al (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci USA 105:18232–18237

    CAS  PubMed  Google Scholar 

  • Zimmermann MB, Wegmueller R, Zeder C et al (2004) Triple fortification of salt with microcapsules of iodine, iron, and vitamin A. Am J Clin Nutr 80:1283–1290

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

S.G.-G. is recipient of a fellowship from the Catalan Regional Government (DIUE and “Fons Social Europeu 2008FIC 00196) Spain. T.C. is supported by the Ramon y Cajal (RyC) program, Spain. PC is grateful for financial support to the Ministry of Science and Innovation, Spain (Grant number BFU2007-61413) and to the European Research Council for advanced grant, BIOFORCE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Gómez-Galera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Galera, S., Rojas, E., Sudhakar, D. et al. Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic Res 19, 165–180 (2010). https://doi.org/10.1007/s11248-009-9311-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-009-9311-y

Keywords

Navigation