Skip to main content

Advertisement

Log in

Vascular endothelial growth factors in pulmonary edema: an update

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Pulmonary edema is a life-threatening complication of critical illness. Identification of the underlying mechanisms of pulmonary edema is a prerequisite for the development of adequate treatment. The initial description of fluid transportation across capillaries (Starling’s law) while of critical importance, did not provide full insight into the underlying pathophysiology of vascular leakage. Pulmonary edema can be differentiated into two distinct categories based on the Starling theory; the high-permeability type is attributed to inflammatory changes occurring in conditions such as the adult respiratory distress syndrome (ARDS) and the cardiogenic type is characterized by an imbalance in the Starling hydrostatic forces and occurs in acute or decompensated heart failure. However, it has long been recognized that there is significant overlap between the various types of pulmonary edema, raising important questions regarding the role of novel mechanisms that may contribute to the development of interstitial and alveolar leakage. Recently, several studies on VEGF, an angiogenic growth factor which affects endothelial permeability, have identified this molecule as a potential regulator of vascular leakage and repair in pulmonary edema. We review here the underlying the mechanisms by which VEGF may do this and will discuss the still unanswered questions regarding vascular pharmacology in the setting of pulmonary edema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HPPE:

High-permeability pulmonary edema

VEGF:

Vascular endothelial growth factor

CPE:

Cardiogenic pulmonary edema

CHF:

Congestive heart failure

ARDS:

Acute respiratory distress syndrome

ALI:

Acute lung injury

VVO:

Vesiculo-vacuolar organelles

PLC:

Phospholipase C

DAG:

Diacylglycerol

NOS:

Nitric oxide synthase

ELF:

Epithelial lining fluid

BAL:

Bronchoalveolar lavage

References

  1. Michel CC, Curry FE (1999) Microvascular permeability. Physiol Rev 79:703–761

    PubMed  CAS  Google Scholar 

  2. Renkin EM (1985) Capillary transport of macromolecules: pores and other endothelial pathways. J Appl Physiol 58:315–325

    PubMed  CAS  Google Scholar 

  3. Reed RK, Berg A, Gjerde EA et al (2001) Control of interstitial fluid pressure: role of beta- integrins. Semin Nephrol 21:222–230

    Article  PubMed  CAS  Google Scholar 

  4. Pietras K, Ostman A, Sjoquist M et al (2001) Inhibition of platelet-derived growth factor receptors reduces interstitial hypertension and increases transcapillary transport in tumors. Cancer Res 61:2929–2934

    PubMed  CAS  Google Scholar 

  5. Murray JF, Nadel JA, Mason RJ et al (2000) Textbook of respiratory medicine. In: Murray JF, Nadel JF (eds) WB Saunders Company, Philadelphia, PA

    Google Scholar 

  6. Braunwald E, Zipes DP, Libby P (2001) Heart disease. In: Brauwald E (ed) Textbook of cardiovascular medicine. WB Saunders Company, Philadelphia, PA

    Google Scholar 

  7. Minnear FL, Barie PS, Malik AB (1985) Effects of large, transient increases in pulmonary vascular pressures on lung fluid balance. J Appl Physiol 55:985

    Google Scholar 

  8. West JB, Mathieu-Costello O (1995) Vulnerability of pulmonary capillaries in heart disease. Circulation 92:622–631

    PubMed  CAS  Google Scholar 

  9. De Pasquale CG, Arnolda LF, Dole IR et al (2003) Prolonged alveolocapillary barrier damage after acute cardiogenic pulmonary edema. Crit Care Med 31(4):1060–1067

    Article  PubMed  CAS  Google Scholar 

  10. Parker JC (2000) Inhibitors of myosin light chain kinase and phosphodiesterase reduce ventilator-induced lung injury. J Appl Physiol 89:2241–2248

    PubMed  CAS  Google Scholar 

  11. Haselton FR, Alexander JS, Mueller SN (1993) Adenosine decreases permeability of in vitro endothelial monolayers. J Appl Physiol 74:1581–1590

    PubMed  CAS  Google Scholar 

  12. Dejana E (1997) Endothelial adherens junctions: implications in the control of vascular permeability and angiogenesis. J Clin Invest 100:S7–S10

    PubMed  CAS  Google Scholar 

  13. Nieuw Amerongen GP, van Delft S, Vermeer MA et al (2000) Activation of RhoA by thrombin in endothelial hyperpermeability: role of Rho kinase and protein tyrosine kinases. Circ Res 87:335–340

    PubMed  Google Scholar 

  14. Firth JA, Bauman KF, Sibley CP (1987) The intercellular junctions of guinea-pig placental capillaries: a possible structural basis for endothelial solute permeability. J Ultrastruct Res 85:45–57

    Article  Google Scholar 

  15. Kevil CG, Oshima T, Alexander B et al (2000) H2O2-mediated permeability: role of MAPK and occludin. Am J Physiol Cell Physiol 279:C21–C30

    PubMed  CAS  Google Scholar 

  16. Feng D, Nagy JA, Hipp J et al (1996) Vesiculo-vacuolar organelles and the regulation of venular permeability to macromolecules by vascular permeability factor, histamine and serotonin. J Exp Med 183:1981–1986

    Article  PubMed  CAS  Google Scholar 

  17. Ferrara N (2000) VEGF: an update on biological and therapeutic aspects. Curr Opin Biotech 11:617–624

    Article  PubMed  CAS  Google Scholar 

  18. Senger DR, Senger DR, Connolly DT et al (1990) Purification and NH2-terminal amino acid sequence of guinea-pig tumor-secreted vascular permeability factor. Cancer Res 50:1774–1778

    PubMed  CAS  Google Scholar 

  19. Bates DO (1998) The chronic effect of vascular endothelial growth factor on individually perfused frog mesenteric vessels. J Physiol 513:225–233

    Article  PubMed  CAS  Google Scholar 

  20. Wu HM, Huang Q, Yuan Y et al (1996) VEGF induces N-dependent hyperpermeability in coronary venules. Am J Physiol Heart Circulatory Physiol 271:2735–2739

    Google Scholar 

  21. Dvorak AM, et al (1996) The vesiculo-vacuolar organelle (VVO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation. J Leukoc Biol 59:100–115

    PubMed  CAS  Google Scholar 

  22. Roberts WG, Palade GE (1995) Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci 108:2369–2379

    PubMed  CAS  Google Scholar 

  23. Neal M, Michel CC (1997) Vascular endothelial growth factor (VEGF) induces permeability by inducing openings through endothelial cells. Int J Microcirc Clin Exp 17:198–206

    Article  Google Scholar 

  24. Ferrara N (2002) Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol 29(6 Suppl 16):10–14

    PubMed  CAS  Google Scholar 

  25. Kaner RJ, Crystal RG (2001) Compartmentalisation of vascular endothelial cell growth factor to the epithelial surface of the human lung. Mol Med 7:240–246

    PubMed  CAS  Google Scholar 

  26. Kaner RJ, Ladetto JV, Singh R et al (2000) Lung overexpression of the vascular endothelial growth factor gene induces pulmonary edema. Am J Resp Cell Mol Biol 22:657–664

    CAS  Google Scholar 

  27. Karmpaliotis D, Kosmidou I, Ingenito EP et al (2002) Angiogenic growth factors in the pathophysiology of a murine model of acute lung injury. Am J Physiol Lung Cell Mol Physiol 282(3):585–595

    Google Scholar 

  28. Becker PM, Alcasabas A, Yu AY et al (2000) Oxygen-independent upregulation of vascular endothelial growth factor and vascular barrier dysfunction during ventilated pulmonary ischemia in isolated ferret lungs. Am J Respir Cell Mol Biol 22: 272–279

    PubMed  CAS  Google Scholar 

  29. Gurkan OU, O’Donnell C, Brower R et al (2003) Differential effects of mechanical ventilatory strategy on lung injury and systemic organ inflammation in mice. Am J Physiol Lung Cell Mol Physiol 285(3):L710–L718

    PubMed  CAS  Google Scholar 

  30. Choi WI, Quinn DA, Park KM et al (2003) Systemic microvascular leak in an in vivo rat model of ventilator-induced lung injury. Am J Respir Crit Care Med 167(12):1627–1632

    Article  PubMed  Google Scholar 

  31. Thickett, Armstrong L, Christie SJ et al (2001) Vascular endothelial growth factor may contribute to increased vascular permeability in acute respiratory distress syndrome. Am J Resp Cell Mol Biol 164(9):1601–1605

    CAS  Google Scholar 

  32. Thickett D, Armstrong L, Millar AB (2002) A role for vascular endothelial growth factor in acute and resolving lung injury. Am J Respir Crit Care Med 166:1332–1337

    Article  PubMed  Google Scholar 

  33. Corne J, Chupp G, Lee CG et al (2000) IL-13 stimulates vascular endothelial cell growth factor and protects against hyperoxic acute lung injury. J Clin Invest 106:783–791

    Article  PubMed  CAS  Google Scholar 

  34. Maitre B, Boussat S, Jean D et al (2001) Vascular endothelial growth factor synthesis in the acute phase of experimental and clinical lung injury. Eur Respir J 18(1):100–116

    Article  PubMed  CAS  Google Scholar 

  35. Gerber HP, Dixit V, Ferrara N (1998) Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem 273:13313–13316

    Article  PubMed  CAS  Google Scholar 

  36. Carpenter T, Schomberg S, Steudel W et al (2003) Endothelin B receptor deficiency predisposes to pulmonary edema formation via increased lung vascular endothelial cell growth factor expression. Circ Res 93(5):456–463

    Article  PubMed  CAS  Google Scholar 

  37. Mann DL (2002) Inflammatory mediators and the failing heart. Past, present and the forsseable future. Circ Res 91:988–998

    CAS  Google Scholar 

  38. Milo O, Cotter G, Kaluski E et al (2003) Comparison of inflammatory and neurohormonal activation in cardiogenic pulmonary edema secondary to ischemic versus non-ischemic causes. Am J Cardiol 92:222–226

    Article  PubMed  CAS  Google Scholar 

  39. Matsuno H, Kozawa O, Yoshimi AN et al (2002) Lack of a2-antiplasmin promotes acute heart failure via overrelease of VEGF after acute myocardial infarction. Blood 100(7):2487–2493

    Article  PubMed  CAS  Google Scholar 

  40. Abraham D, Taghavi S, Riml P et al (2002) VEGF-A but not -B mediate increased vascular permeability in preserved lung grafts. Transplanation 73(11):1703–1706

    Article  CAS  Google Scholar 

  41. Taghavi S, Abraham D, Riml P et al (2002) Co-expression of endothelin-1 and vascular endothelial growth factor mediates increased vascular permeability in lung grafts before reperfusion. J Heart Lung Transplant 21:600–603

    Article  PubMed  Google Scholar 

  42. Chin BSP, Chung NAY, Gibbs R et al (2002) Vascular endothelial growth factor and soluble P-selectin in acute and chronic congestive heart failure. Am J Cardiol 90(11):1258–1260

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Michael Gibson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosmidou, I., Karmpaliotis, D., Kirtane, A.J. et al. Vascular endothelial growth factors in pulmonary edema: an update. J Thromb Thrombolysis 25, 259–264 (2008). https://doi.org/10.1007/s11239-007-0062-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-007-0062-4

Keywords

Navigation