Skip to main content
Log in

Expression Analysis of Fatty Acid Biosynthetic Pathway Genes during Interactions of Oil Palm (Elaeis guineensis Jacq.) with the Pathogenic Ganoderma boninense and Symbiotic Trichoderma harzianum Fungal Organisms

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The fatty acid (FA) signaling pathway is emerging as an important mechanism in plant responses during interactions with microbial organisms. For a comprehensive evaluation of key FA biosynthetic pathway genes during interactions of oil palm (Elaeis guineensis Jacq.) with the pathogenic Ganoderma boninense and symbiotic Trichoderma harzianum fungal organisms, a lane-based array analysis of gene expression in artificially inoculated oil palm seedlings was performed. The results obtained demonstrated that acetyl-CoA carboxylase (ACC), β-ketoacyl-ACP synthases (KAS) II and III, palmitoyl-ACP thioesterase (PTE), oleoyl-ACP thioesterase (OTE) and glycerol-3-phosphate acyltransferase (ACT) showed identical responses in root and leaf tissues for the same fungi. The expression of these genes was up-regulated in both root and leaf tissues at 21 days post-inoculation (dpi) during interaction of oil palm with G. boninense. Thereafter, production of physical symptoms occurred at 42 and 63 dpi concomitantly with suppression of expression of these genes. An increase in the expression level of these genes was observed in both tissues at 3–63 dpi, which correlated with the colonization of roots and promotion of plant growth by T. harzianum. These data suggest that FA biosynthetic pathway genes are involved in the defense response of oil palm to infection. Identical plant responses by FA biosynthetic pathway genes may lead to enhanced resistance against G. boninense and could be a useful marker to contribute towards early detection of infection. The distinct expression profile during symbiotic interaction demonstrated its role in plant resistance mechanisms and growth promotion by T. harzianum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a,b
Fig. 2a–p
Fig. 3a–f
Fig. 4a–c
Fig. 5

Similar content being viewed by others

References

  • Alizadeh F, Siti Nor Akmar A, Khodavandi A, Faridah A, Umi Kalsom Y, Chong PP (2011) Differential expression of oil palm pathology genes during interactions with Ganoderma boninense and Trichoderma harzianum. J Plant Physiol 168:1106–1113

    Article  CAS  PubMed  Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defense responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Barry KM, Pearce RB, Evans D, Hall LD, Mohammed CM (2001) Initial defense responses in sapwood of Eucalyptus nitens (Maiden) following wounding and fungal inoculation. Physiol Mol Plant Pathol 58:63–72

    Article  Google Scholar 

  • Baud S, Wuilleme S, To A, Rochat C, Lepiniec L (2009) Role of WRINKLED1 in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis. Plant J 60:933–947

    Article  CAS  PubMed  Google Scholar 

  • Bruce TJ, Pickett JA (2007) Plant defense signaling induced by biotic attacks. Curr Opin Plant Biol 10:387–392

    Article  CAS  PubMed  Google Scholar 

  • Chanda B, Venugopal SC, Kulshrestha S, Navarre DA, Downie B, Vaillancourt L, Kachroo A, Kachroo P (2008) Glycerol-3-phosphate levels are associated with basal resistance to the hemibiotrophic fungus Colletotrichum higginsianum in Arabidopsis. Plant Physiol 147:2017–2029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dehesh K, Tai H, Edwards P, Byrne J, Jaworski JG (2001) Overexpression of 3-ketoacyl-acyl-carrier protein synthase IIIs in plants reduces the rate of lipid synthesis. Plant Physiol 125:1103–1114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • El Hadrami A, El-Bebany AF, Yao Z, Adam LR, El Hadrami I, Daayf F (2012) Plants versus fungi and oomycetes: pathogenesis, defense and counter-defense in the proteomics era. Int J Mol Sci 13:7237–7259

    Article  PubMed Central  PubMed  Google Scholar 

  • Figueroa-Balderas RE, Garcia-Ponce B, Rocha-Sosa M (2006) Hormonal and stress induction of the gene encoding common bean acetyl-coenzyme A carboxylase. Plant Physiol 142:609–619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flood J, Husan Y, Turner PD, O’Grady EB (2000) The spread of Ganoderma from infective sources in the filed and its implications for management of the disease in oil palm. In: Flood J, Bridge PD, Holderness M (eds) Ganoderma diseases of perennial crops, 1st edn. CABI, Wallingford, pp 101–112

    Chapter  Google Scholar 

  • Garcia-Ponce B, Rocha-Sosa M (2000) The octadecanoid pathway is required for pathogen-induced multi-functional acetyl-CoA carboxylase accumulation in common bean (Phaseolus vulgaris L.). Plant Sci 157:181–190

    Article  CAS  PubMed  Google Scholar 

  • Gohre V, Robatzek S (2008) Breaking the barriers: microbial effector molecules subvert plant immunity. Annu Rev Phytopathol l46:89–215

    Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Harris ME, Meyer G, Vandergon T, Vandergon VO (2013) Loss of the acetyl-CoA carboxylase (accD) gene in Poales. Plant Mol Biol Rep 31:21–31

    Article  CAS  Google Scholar 

  • Kachroo A, Kachroo P (2009) Fatty acid-derived signals in plant defense. Annu Rev Phytopathol 47:153–176

    Article  CAS  PubMed  Google Scholar 

  • Kachroo A, Fu DQ, Havens W, Navarre DR, Kachroo P, Ghabrial SA (2008) An oleic acid-mediated pathway induces constitutive defense signaling and enhanced resistance to multiple pathogens in soybean. Mol Plant-Microbe Interact 21:564–575

    Article  CAS  PubMed  Google Scholar 

  • Lei A, Chen H, Shen G, Hu Z, Chen L, Wang J (2012) Expression of fatty acid synthesis genes and fatty acid accumulation in Haematococcus pluvialis under different stressors. Biotechnol Biofuels 5:15

    Article  Google Scholar 

  • Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, Ishiguro S, Nakamura K (2009) An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J 60:476–487

    Article  CAS  PubMed  Google Scholar 

  • Murphy DJ (2009) Oil palm: future prospects for yield and quality improvements. Lipid Technol 21:257–260

    Article  Google Scholar 

  • Naidoo S, Murray SL, Denby KJ, Berger DK (2007) Microarray analysis of the Arabidopsis thalianacir1 (constitutively induced resistance 1) mutant reveals candidate defense response genes against Pseudomonas syringae pv tomato DC3000. South African J Bot 73:412–421

    Article  CAS  Google Scholar 

  • Ohlrogge JB, Jaworski JG (1997) Regulation of fatty acid synthesis. Annu Rev Plant Physiol Plant Mol Biol 48:109–136

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Castro R, Contreras-Cornejo HA, Macias-Rodriguez L, Lopez-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paterson RRM, Sariah M, Lima N (2009) The feasibility of producing oil palm with altered lignin content to control Ganoderma disease. J Phytopathol 157:649–656

    Article  CAS  Google Scholar 

  • Pearce RB (2000) Decay development and its restriction in trees. J Arboric 26:1–11

    Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  CAS  PubMed  Google Scholar 

  • Podkowinski J, Jelenska J, Sirikhachornkit A, Zuther E, Haselkorn R, Gornicki P (2003) Expression of cytosolic and plastid acetyl-CoA carboxylase genes in young wheat plants. Plant Physiol 131:763–772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raffaele S, Leger A, Roby D (2009) Very long chain fatty acid and lipid signaling in the response of plants to pathogens. Plant Signal Behav 4:94–99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rees RW, Flood J, Hasan Y, Potter U, Cooper RM (2009) Basal stem rot of oil palm (Elaeis guineensis); mode of root infection and lower stem invasion by Ganoderma boninense. Plant Pathol 58:982–989

    Article  Google Scholar 

  • Ruuska SA, Girke T, Benning C, Ohlrogge JB (2002) Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell 14:1191–1206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Savchenko T, Walley JW, Chehab EW, Xiao Y, Kaspi R, Pye MF, Mohamed ME, Lazarus C, Bostock RM, Dehesh K (2010) Arachidonic acid: an evolutionarily conserved signaling molecule modulates plant stress signaling networks. Plant Cell 22:3193–3205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Shorrosh BS, Dixon RA, Ohlrogge JB (1994) Molecular cloning, characterization, and elicitation of acetyl-CoA carboxylase from alfalfa. Proc Natl Acad Sci USA 91:4323–4327

    Article  CAS  PubMed  Google Scholar 

  • Silvar C, Casas AM, Kopahnke D, Habekuß A, Schweizer G, Garcia MP, Lasa JM, Ciudad FJ, Molina-Cano JL, Igartua E, Ordon F (2009) Screening the Spanish Barley Core Collection for disease resistance. Plant Breed 129:45–52

    Article  Google Scholar 

  • The OK, Ramli US (2010) Characterization of a KCS-like KASII from Jessenia bataua that elongates saturated and monounsaturated stearic acids in Arabidopsis thaliana. Mol Biotechnol 48:97–108

    Google Scholar 

  • Thiel H, Varrelmann M (2009) Identification of Beet necrotic yellow vein virus P25 pathogenicity factor-interacting sugar beet proteins that represent putative virus targets or components of plant resistance. Mol Plant-Microbe Interact 22:999–1010

    Article  CAS  PubMed  Google Scholar 

  • Tranbarger TT, Dussert S, Joet T, Argout X, Summo M, Champion A, Cros D, Omore A, Nouy B, Morcillo F (2011) Regulatory mechanisms underlying oil palm fruit mesocarp maturation, ripening, and functional specialization in lipid and carotenoid metabolism. Plant Physiol 156:564–584

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Upchurch RG (2008) Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett 30:967–977

    Article  CAS  PubMed  Google Scholar 

  • Venugopal SC, Jeong RD, Mandal MK, Zhu S, Chandra-Shekara AC, Xia Y, Hersh M, Stromberg AJ, Navarre DR, Kachroo A, Kachroo P (2009) Enhanced disease susceptibility 1 and salicylic acid act redundantly to regulate resistance gene-mediated signaling. Public Libr Sci Genet 5:e1000545

    Google Scholar 

  • Verhage A, van Wees SCM, Pieterse CMJ (2010) Plant immunity: it’s the hormones talking, but what do they say. Plant Physiol 154:536–540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Wo SL, Lorito M (2008) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72:80–86

    Article  CAS  Google Scholar 

  • Vlot AC, Dempsey DMA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  CAS  PubMed  Google Scholar 

  • Weber H (2002) Fatty acid-derived signals in plants. Trends Plant Sci 7:217–224

    Article  CAS  PubMed  Google Scholar 

  • Yamada T (2001) Defense mechanisms in the sapwood of living trees against microbial infection. J For Res 6:127–137

    Article  CAS  Google Scholar 

  • Yu XM, Zhao WQ, Yang WX, Liu F, Chen JP, Goyer C, Liu DQ (2013) Characterization of a hypersensitive response-induced gene TaHIR3 from wheat leaves infected with leaf rust. Plant Mol Biol Rep 31:314–322

    Article  CAS  Google Scholar 

  • Yuan G, Zhang Z, Xiang K, Shen Y, Du J, Lin H, Liu L, Zhao M, Pan G (2013) Different gene expressions of resistant and susceptible maize inbreds in response to Fusarium verticillioides infection. Plant Mol Biol Rep. doi:10.1007/s11105-0113-0567-2

    Google Scholar 

  • Zambounis AG, Kalamaki MS, Tani EE, Paplomatas EJ, Tsaftaris AS (2012) Expression analysis of defense-related genes in cotton (Gossypium hirsutum) after Fusarium oxysporum f. sp. vasinfectum infection and following chemical elicitation using a salicylic acid analog and methyl jasmonate. Plant Mol Biol Rep 30:225–234

    Article  CAS  Google Scholar 

  • Zhang LH, Jia B, Zhuo RY, Liu JL, Pan HY, Baldwin TC, Zhang SH (2012) An acyl–acyl carrier protein thioesterase gene isolated from wintersweet (Chimonanthus praecox), CpFATB, enhances drought tolerance in transgenic tobacco (Nicotiana tobaccum). Plant Mol Biol Rep 30:433–442

    Article  CAS  Google Scholar 

  • Zipfel C, Robatzek S (2010) Pathogen-associated molecular pattern-triggered immunity: veni, vidi? Plant Physiol 154:551–554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

We thank the late Professor Dr. Faridah Abdullah for her comments and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siti Nor Akmar Abdullah.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 783 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alizadeh, F., Abdullah, S.N.A., Chong, P.P. et al. Expression Analysis of Fatty Acid Biosynthetic Pathway Genes during Interactions of Oil Palm (Elaeis guineensis Jacq.) with the Pathogenic Ganoderma boninense and Symbiotic Trichoderma harzianum Fungal Organisms. Plant Mol Biol Rep 32, 70–81 (2014). https://doi.org/10.1007/s11105-013-0595-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-013-0595-y

Keywords

Navigation