Skip to main content
Log in

Functional interaction between the Arabidopsis orthologs of spindle assembly checkpoint proteins MAD1 and MAD2 and the nucleoporin NUA

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

In eukaryotes, the spindle assembly checkpoint (SAC) ensures the fidelity of chromosome segregation through monitoring the bipolar attachment of microtubules to kinetochores. Recently, the SAC components Mitotic Arrest Deficient 1 and 2 (MAD1 and MAD2) were found to associate with the nuclear pore complex (NPC) during interphase and to require certain nucleoporins, such as Tpr in animal cells, to properly localize to kinetochores. In plants, the SAC components MAD2, BUR1, BUB3 and Mps1 have been identified, but their connection to the nuclear pore has not been explored. Here, we show that AtMAD1 and AtMAD2 are associated with the nuclear envelope during interphase, requiring the Arabidopsis homolog of Tpr, NUA. Both NUA and AtMAD2 loss-of-function mutants have a shorter primary root and a smaller root meristem, and this defect can be partially rescued by sucrose. Mild AtMAD2 over-expressors exhibit a longer primary root, and an extended root meristem. In BY-2 cells, AtMAD2 is associated with kinetochores during prophase and prometaphase, but not metaphase, anaphase and telophase. Protein-interaction assays demonstrate binding of AtMAD2 to AtMAD1 and AtMAD1 to NUA. Together, these data suggest that NUA scaffolds AtMAD1 and AtMAD2 at the nuclear pore to form a functional complex and that both NUA and AtMAD2 suppress premature exit from cell division at the Arabidopsis root meristem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JG, Sabet H, Tran T, Yu X, Powell JI, Yang LM, Marti GE, Moore T, Hudson J, Lu LS, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, Staudt LM (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511

    Article  PubMed  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen HM, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide Insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Barnhart EL, Dorer RK, Murray AW, Schuyler SC (2011) Reduced Mad2 expression keeps relaxed kinetochores from arresting budding yeast in mitosis. Mol Biol Cell 22:2448–2457

    Article  PubMed  CAS  Google Scholar 

  • Boruc J, Van den Daele H, Hollunder J, Rombauts S, Mylle E, Hilson P, Inze D, De Veylder L, Russinova E (2010) Functional modules in the Arabidopsis core cell cycle binary protein–protein interaction network. Plant Cell 22:1264–1280

    Article  PubMed  CAS  Google Scholar 

  • Buffin E, Lefebvre C, Huang J, Gagou ME, Karess RE (2005) Recruitment of Mad2 to the kinetochore requires the Rod/Zw10 complex. Curr Biol 15:856–861

    Article  PubMed  CAS  Google Scholar 

  • Caillaud MC, Paganelli L, Lecomte P, Deslandes L, Quentin M, Pecrix Y, Le Bris M, Marfaing N, Abad P, Favery B (2009) Spindle assembly checkpoint protein dynamics reveal conserved and unsuspected roles in plant cell division. PLoS ONE 4:e6757

    Article  PubMed  Google Scholar 

  • Chen RH, Waters JC, Salmon ED, Murray AW (1996) Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science 274:242–246

    Article  PubMed  CAS  Google Scholar 

  • Chen RH, Brady DM, Smith D, Murray AW, Hardwick KG (1999) The spindle checkpoint of budding yeast depends on a tight complex between the Mad1 and Mad2 proteins. Mol Biol Cell 10:2607–2618

    PubMed  CAS  Google Scholar 

  • Chen X, Cheung ST, So S, Fan ST, Barry C, Higgins J, Lai KM, Ji JF, Dudoit S, Ng IOL, van de Rijn M, Botstein D, Brown PO (2002) Gene expression patterns in human liver cancers. Mol Biol Cell 13:1929–1939

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Collins TJ (2007) ImageJ for microscopy. Biotechniques 43:25

    Article  PubMed  Google Scholar 

  • David KM, Perrot-Rechenmann C (2001) Characterization of a tobacco bright yellow 2 cell line expressing the tetracycline repressor at a high level for strict regulation of transgene expression. Plant Physiol 125:1548–1553

    Article  PubMed  CAS  Google Scholar 

  • De Souza CP, Hashmi SB, Nayak T, Oakley B, Osmani SA (2009) Mlp1 acts as a mitotic scaffold to spatially regulate spindle assembly checkpoint proteins in Aspergillus nidulans. Mol Biol Cell 20:2146–2159

    Article  PubMed  Google Scholar 

  • Dello Loio R, Linhares FS, Sabatini S (2008) Emerging role of cytokinin as a regulator of cellular differentiation. Curr Opin Plant Biol 11:23–27

    Article  Google Scholar 

  • Dobles M, Liberal V, Scott ML, Benezra R, Sorger PK (2000) Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell 101:635–645

    Article  PubMed  CAS  Google Scholar 

  • Dohmen RJ, Strasser AW, Honer CB, Hollenberg CP (1991) An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera. Yeast 7:691–692

    Article  PubMed  CAS  Google Scholar 

  • Elledge SJ (1998) Mitotic arrest: Mad2 prevents sleepy from waking up the APC. Science 279:999–1000

    Article  PubMed  CAS  Google Scholar 

  • Eveland AL, Jackson DP (2011) Sugars, signalling, and plant development. J Exp Bot PMID 22140246

  • Fang GW, Yu HT, Kirschner MW (1998) The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev 12:1871–1883

    Article  PubMed  CAS  Google Scholar 

  • Fava LL, Kaulich M, Nigg EA, Santamaria A (2011) Probing the in vivo function of Mad1:C-Mad2 in the spindle assembly checkpoint. EMBO J 30:3322–3336

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Benkova E, Mayer U, Palme K, Muster G (2003) Automated whole mount localisation techniques for plant seedlings. Plant J 34:115–124

    Article  PubMed  CAS  Google Scholar 

  • Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z, Pacyna-Gengelbach M, van de Rijn M, Rosen GD, Perou CM, Whyte RI, Altman RB, Brown PO, Botstein D, Petersen I (2001) Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA 98:13784–13789

    Article  PubMed  CAS  Google Scholar 

  • Heyman J, Van den Daele H, De Wit K, Boudolf V, Berckmans B, Verkest A, Kamei CL, De Jaeger G, Koncz C, De Veylder L (2011) Arabidopsis ULTRAVIOLET-B-INSENSITIVE4 maintains cell division activity by temporal inhibition of the anaphase-promoting complex/cyclosome. Plant Cell 23:4394–4410

    Article  PubMed  CAS  Google Scholar 

  • Hirano H, Shinmyo A, Sekine M (2011) Arabidopsis G1 cell cycle proteins undergo proteasome-dependent degradation during sucrose starvation. Plant Physiol Biochem 49:687–691

    Article  PubMed  CAS  Google Scholar 

  • Howell BJ, Hoffman DB, Fang G, Murray AW, Salmon ED (2000) Visualization of Mad2 dynamics at kinetochores, along spindle fibers, and at spindle poles in living cells. J Cell Biol 150:1233–1249

    Article  PubMed  CAS  Google Scholar 

  • Howell BJ, McEwen BE, Canman JC, Hoffman DB, Farrar EM, Rieder CL, Salmon ED (2001) Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J Cell Biol 155:1159–1172

    Article  PubMed  CAS  Google Scholar 

  • Iouk T, Kerscher O, Scott RJ, Basrai MA, Wozniak RW (2002) The yeast nuclear pore complex functionally interacts with components of the spindle assembly checkpoint. J Cell Biol 159:807–819

    Article  PubMed  CAS  Google Scholar 

  • Iwanaga Y, Chi YH, Miyazato A, Sheleg S, Haller K, Peloponese JM Jr, Li Y, Ward JM, Benezra R, Jeang KT (2007) Heterozygous deletion of mitotic arrest-deficient protein 1 (MAD1) increases the incidence of tumors in mice. Cancer Res 67:160–166

    Article  PubMed  CAS  Google Scholar 

  • James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436

    PubMed  CAS  Google Scholar 

  • Joubes J, De Schutter K, Verkest A, Inze D, De Veylder L (2004) Conditional, recombinase-mediated expression of genes in plant cell cultures. Plant J 37:889–896

    Article  PubMed  CAS  Google Scholar 

  • Katsani KR, Karess RE, Dostatni N, Doye V (2008) In vivo dynamics of Drosophila nuclear envelope components. Mol Biol Cell 19:3652–3666

    Article  PubMed  CAS  Google Scholar 

  • Kimbara J, Endo TR, Nasuda S (2004) Characterization of the genes encoding for MAD2 homologues in wheat. Chromosome Res 12:703–714

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa R (2009) The spindle assembly checkpoint in Caenorhabditis elegans—one who lacks Mad1 becomes mad one. Cell Cycle 8:338–344

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa R, Rose AM (1999) Components of the spindle-assembly checkpoint are essential in Caenorhabditis elegans. Nat Cell Biol 1:514–521

    Article  PubMed  CAS  Google Scholar 

  • Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11:2283–2290

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Sterling H, Burlingame A, McCormick F (2008) Tpr directly binds to Mad1 and Mad2 and is important for the Mad1-Mad2-mediated mitotic spindle checkpoint. Genes Dev 22:2926–2931

    Article  PubMed  CAS  Google Scholar 

  • Lince-Faria M, Maffini S, Orr B, Ding Y, Claudia F, Sunkel CE, Tavares A, Johansen J, Johansen KM, Maiato H (2009) Spatiotemporal control of mitosis by the conserved spindle matrix protein Megator. J Cell Biol 184:647–657

    Article  PubMed  CAS  Google Scholar 

  • Lindsay DL, Bonham-Smith PC, Postnikoff S, Gray GR, Harkness TA (2011) A role for the anaphase promoting complex in hormone regulation. Planta 233:1223–1235

    Article  PubMed  CAS  Google Scholar 

  • Marrocco K, Thomann A, Parmentier Y, Genschik P, Criqui MC (2009) The APC/C E3 ligase remains active in most post-mitotic Arabidopsis cells and is required for proper vasculature development and organization. Development 136:1475–1485

    Article  PubMed  CAS  Google Scholar 

  • Marrocco K, Bergdoll M, Achard P, Criqui MC, Genschik P (2010) Selective proteolysis sets the tempo of the cell cycle. Curr Opin Plant Biol 13:631–639

    Article  PubMed  CAS  Google Scholar 

  • Michel LS, Liberal V, Chatterjee A, Kirchwegger R, Pasche B, Gerald W, Dobles M, Sorger PK, Murty VVVS, Benezra R (2001) MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409:355–359

    Article  PubMed  CAS  Google Scholar 

  • Musacchio A, Salmon ED (2007) The spindle-assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8:379–393

    Article  PubMed  CAS  Google Scholar 

  • Muthuswamy S, Meier I (2011) Genetic and environmental changes in SUMO homeostasis lead to nuclear mRNA retention in plants. Planta 233:201–208

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y, Toyooka K, Matsuoka K, Jinbo T, Kimura T (2007) Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. J Biosci Bioeng 104:34–41

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth K (2005) How do so few control so many? Cell 120:739–746

    Article  PubMed  CAS  Google Scholar 

  • Orr B, Bousbaa H, Sunkel CE (2007) Mad2-independent spindle assembly checkpoint activation and controlled metaphase-anaphase transition in Drosophila S2 cells. Mol Biol of the Cell 18:850–863

    Article  CAS  Google Scholar 

  • Perilli S, Sabatini S (2010) Analysis of root meristem size development. Methods Mol Biol 655:177–187

    Article  PubMed  CAS  Google Scholar 

  • Riou-Khamlichi C, Menges M, Healy JM, Murray JA (2000) Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. Mol Cell Biol 20:4513–4521

    Article  PubMed  CAS  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Ann Rev Plant Biol 57:675–709

    Article  CAS  Google Scholar 

  • Rose A, Manikantan S, Schraegle SJ, Maloy MA, Stahlberg EA, Meier I (2004) Genome-wide identification of Arabidopsis coiled-coil proteins and establishment of the ARABI-COIL database. Plant Physiol 134:927–939

    Article  PubMed  CAS  Google Scholar 

  • Scott RJ, Lusk CP, Dilworth DJ, Aitchison JD, Wozniak RW (2005) Interactions between Mad1p and the nuclear transport machinery in the yeast Saccharomyces cerevisiae. Mol Biol Cell 16:4362–4374

    Article  PubMed  CAS  Google Scholar 

  • Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C, Clarke JD, Cotton D, Bullis D, Snell J, Miguel T, Hutchison D, Kimmerly B, Mitzel T, Katagiri F, Glazebrook J, Law M, Goff SA (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14:2985–2994

    Article  PubMed  CAS  Google Scholar 

  • Skinner JJ, Wood S, Shorter J, Englander SW, Black BE (2008) The Mad2 partial unfolding model: regulating mitosis through Mad2 conformational switching. J Cell Biol 183:761–768

    Article  PubMed  CAS  Google Scholar 

  • Sotillo R, Hernando E, Diaz-Rodriguez E, Teruya-Feldstein J, Cordon-Cardo C, Lowe SW, Benezra R (2007) Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 11:9–23

    Article  PubMed  CAS  Google Scholar 

  • Suijkerbuijk SJE, Kops GJPL (2008) Preventing aneuploidy: the contribution of mitotic checkpoint proteins. Biochim Biophys Acta 1786:24–31

    PubMed  CAS  Google Scholar 

  • Xu XM, Rose A, Meier I (2007a) NUA activities at the plant nuclear pore. Plant Signal Behav 2:553–555

    Article  PubMed  Google Scholar 

  • Xu XM, Rose A, Muthuswamy S, Jeong SY, Venkatakrishnan S, Zhao Q, Meier I (2007b) NUCLEAR PORE ANCHOR, the Arabidopsis homolog of Tpr/Mlp1/Mlp2/megator, is involved in mRNA export and SUMO homeostasis and affects diverse aspects of plant development. Plant Cell 19:1537–1548

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Li R, Qi M (2000) In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J 22:543–551

    Article  PubMed  CAS  Google Scholar 

  • Yu HG, Muszynski MG, Kelly Dawe R (1999) The maize homologue of the cell cycle checkpoint protein MAD2 reveals kinetochore substructure and contrasting mitotic and meiotic localization patterns. J Cell Biol 145:425–435

    Article  PubMed  CAS  Google Scholar 

  • Zhao Q, Leung S, Corbett AH, Meier I (2006) Identification and characterization of the Arabidopsis orthologs of nuclear transport factor 2, the nuclear import factor of ran. Plant Physiol 140:869–878

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Yao J, Joshi HC (2002) Attachment and tension in the spindle assembly checkpoint. J Cell Sci 115:3547–3555

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Drs. Stephen Osmani, Rebecca Lamb, and Keith Slotkin for helpful discussions and critical reading of the original draft of this manuscript. This work was supported by a grant from the National Science Foundation (MCB-0641271) to I. M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iris Meier.

Additional information

Dongfeng Ding and Sivaramakrishnan Muthuswamy have equally contributed to the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 171 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, D., Muthuswamy, S. & Meier, I. Functional interaction between the Arabidopsis orthologs of spindle assembly checkpoint proteins MAD1 and MAD2 and the nucleoporin NUA. Plant Mol Biol 79, 203–216 (2012). https://doi.org/10.1007/s11103-012-9903-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-012-9903-4

Keywords

Navigation