Skip to main content

Advertisement

Log in

Novel Therapies Targeting Inner Mitochondrial Membrane—From Discovery to Clinical Development

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Mitochondrial oxidative stress and dysfunction have been implicated in the aging process and in numerous chronic diseases. The need for therapies that can protect and/or improve mitochondrial function is obvious. However, the development of mitoprotective drugs has been hampered by a number of challenges, and there are at present no approved therapies for mitochondrial dysfunction. This article describes the original discovery, preclinical development, and clinical development of a novel class of small peptide molecules that selectively target the inner mitochondrial membrane and protect mitochondrial function. These compounds have the potential to be a paradigm-shifting approach to the treatment of mitochondrial dysfunction, which underlies many common diseases, including cardiorenal, neurologic, and metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ATP:

adenosine triphosphate

BBB:

blood-brain barrier

CypD:

cyclophilin D

Cyt c:

cytochrome c

ETC:

electron transport chain

IMM:

inner mitochondrial membrane

iv :

intravenous

MCAT:

overexpression of catalase targeted to mitochondria

MPP+ :

1-methyl-4-phenylpyridium

MPT:

mitochondrial permeability transition

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

OMM:

outer mitochondrial membrane

ROS:

reactive oxygen species

sc :

subcutaneous

SOD:

superoxide dismutase

TPP+ :

triphenylphosphonium ion

REFERENCES

  1. Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat Rev Genet. 2005;6:389–402.

    Article  PubMed  CAS  Google Scholar 

  2. Wanagat J, Dai DF, Rabinovitch P. Mitochondrial oxidative stress and mammalian healthspan. Mech Ageing Dev. 2010;131:527–35.

    Article  PubMed  CAS  Google Scholar 

  3. Ren J, Pulakat L, Whaley-Connell A, Sowers JR. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J Mol Med. 2010;88:993–1001.

    Article  PubMed  CAS  Google Scholar 

  4. Martin LJ. Mitochondrial and cell death mechanisms in neurodegenerative diseases. Pharmaceuticals (Basel). 2010;3:839–915.

    CAS  Google Scholar 

  5. Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes. 2008;57:1446–54.

    Article  PubMed  CAS  Google Scholar 

  6. Scatena R, Bottoni P, Botta G, Martorana GE, Giardina B. The role of mitochondria in pharmacotoxicology: a reevaluation of an old, newly emerging topic. Am J Physiol Cell Physiol. 2007;293:C12–21.

    Article  PubMed  CAS  Google Scholar 

  7. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J. 1999;341(Pt 2):233–49.

    Article  PubMed  CAS  Google Scholar 

  8. Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281:1309–12.

    Article  PubMed  CAS  Google Scholar 

  9. Wallace KB, Starkov AA. Mitochondrial targets of drug toxicity. Annu Rev Pharmacol Toxicol. 2000;40:353–88.

    Article  PubMed  CAS  Google Scholar 

  10. Scatena R, Martorana GE, Bottoni P, Giardina B. Mitochondrial dysfunction by synthetic ligands of peroxisome proliferator activated receptors (PPARs). IUBMB Life. 2004;56:477–82.

    Article  PubMed  CAS  Google Scholar 

  11. Brunmair B, Lest A, Staniek K, Gras F, Scharf N, Roden M, et al. Fenofibrate impairs rat mitochondrial function by inhibition of respiratory complex I. J Pharmacol Exp Ther. 2004;311:109–14.

    Article  PubMed  CAS  Google Scholar 

  12. Moreno-Sanchez R, Bravo C, Vasquez C, Ayala G, Silveira LH, Martinez-Lavin M. Inhibition and uncoupling of oxidative phosphorylation by nonsteroidal anti-inflammatory drugs: study in mitochondria, submitochondrial particles, cells, and whole heart. Biochem Pharmacol. 1999;57:743–52.

    Article  PubMed  CAS  Google Scholar 

  13. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552:335–44.

    Article  PubMed  CAS  Google Scholar 

  14. Muller FL, Liu Y, Van Remmen H. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem. 2004;279:49064–73.

    Article  PubMed  CAS  Google Scholar 

  15. Lesnefsky EJ, Hoppel CL. Cardiolipin as an oxidative target in cardiac mitochondria in the aged rat. Biochim Biophys Acta. 2008;1777:1020–7.

    Article  PubMed  CAS  Google Scholar 

  16. Paradies G, Petrosillo G, Paradies V, Ruggiero FM. Oxidative stress, mitochondrial bioenergetics, and cardiolipin in aging. Free Radic Biol Med. 2010;48:1286–95.

    Article  PubMed  CAS  Google Scholar 

  17. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta. 2006;1757:509–17.

    Article  PubMed  CAS  Google Scholar 

  18. Hebert SL, Lanza IR, Nair KS. Mitochondrial DNA alterations and reduced mitochondrial function in aging. Mech Ageing Dev. 2010;131:451–62.

    Article  PubMed  CAS  Google Scholar 

  19. Andreyev AY, Kushnareva YE, Starkov AA. Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc). 2005;70:200–14.

    Article  CAS  Google Scholar 

  20. Kono Y, Fridovich I. Superoxide radical inhibits catalase. J Biol Chem. 1982;257:5751–4.

    PubMed  CAS  Google Scholar 

  21. Yamakura F, Taka H, Fujimura T, Murayama K. Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem. 1998;273:14085–9.

    Article  PubMed  CAS  Google Scholar 

  22. Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet. 1995;11:376–81.

    Article  PubMed  CAS  Google Scholar 

  23. Lebovitz RM, Zhang H, Vogel H, Cartwright Jr J, Dionne L, Lu N, et al. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci USA. 1996;93:9782–7.

    Article  PubMed  CAS  Google Scholar 

  24. Sun J, Folk D, Bradley TJ, Tower J. Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster. Genetics. 2002;161:661–72.

    PubMed  CAS  Google Scholar 

  25. Jang YC, Perez VI, Song W, Lustgarten MS, Salmon AB, Mele J, et al. Overexpression of Mn superoxide dismutase does not increase life span in mice. J Gerontol A Biol Sci Med Sci. 2009;64:1114–25.

    Article  PubMed  Google Scholar 

  26. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science. 2005;308:1909–11.

    Article  PubMed  CAS  Google Scholar 

  27. Treuting PM, Linford NJ, Knoblaugh SE, Emond MJ, Morton JF, Martin GM, et al. Reduction of age-associated pathology in old mice by overexpression of catalase in mitochondria. J Gerontol A Biol Sci Med Sci. 2008;63:813–22.

    PubMed  Google Scholar 

  28. Dai DF, Santana LF, Vermulst M, Tomazela DM, Emond MJ, MacCoss MJ, et al. Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging. Circulation. 2009;119:2789–97.

    Article  PubMed  CAS  Google Scholar 

  29. Lee HY, Choi CS, Birkenfeld AL, Alves TC, Jornayvaz FR, Jurczak MJ, et al. Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance. Cell Metab. 2010;12:668–74.

    Article  PubMed  CAS  Google Scholar 

  30. Wolf N, Penn P, Pendergrass W, Van Remmen H, Bartke A, Rabinovitch P, et al. Age-related cataract progression in five mouse models for anti-oxidant protection or hormonal influence. Exp Eye Res. 2005;81:276–85.

    Article  PubMed  CAS  Google Scholar 

  31. Murphy MP, Smith RA. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol. 2007;47:629–56.

    Article  PubMed  CAS  Google Scholar 

  32. Antonenko YN, Avetisyan AV, Bakeeva LE, Chernyak BV, Chertkov VA, Domnina LV, et al. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: synthesis and in vitro studies. Biochemistry (Mosc). 2008;73:1273–87.

    Article  CAS  Google Scholar 

  33. Schiller PW, Nguyen TM, Berezowska I, Dupuis S, Weltrowska G, Chung NN, et al. Synthesis and in vitro opioid activity profiles of DALDA analogues. Eur J Med Chem. 2000;35:895–901.

    Article  PubMed  CAS  Google Scholar 

  34. Zhao GM, Wu D, Soong Y, Shimoyama M, Berezowska I, Schiller PW, et al. Profound spinal tolerance after repeated exposure to a highly selective mu-opioid peptide agonist: role of delta-opioid receptors. J Pharmacol Exp Ther. 2002;302:188–96.

    Article  PubMed  CAS  Google Scholar 

  35. Zhao K, Luo G, Zhao GM, Schiller PW, Szeto HH. Transcellular transport of a highly polar 3+ net charge opioid tetrapeptide. J Pharmacol Exp Ther. 2003;304:425–32.

    Article  PubMed  CAS  Google Scholar 

  36. Zhao K, Zhao GM, Wu D, Soong Y, Birk AV, Schiller PW, et al. Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem. 2004;279:34682–90.

    Article  PubMed  CAS  Google Scholar 

  37. Zhao GM, Qian X, Schiller PW, Szeto HH. Comparison of [Dmt1]DALDA and DAMGO in binding and G protein activation at mu, delta, and kappa opioid receptors. J Pharmacol Exp Ther. 2003;307:947–54.

    Article  PubMed  CAS  Google Scholar 

  38. Hauser M, Donhardt AM, Barnes D, Naider F, Becker JM. Enkephalins are transported by a novel eukaryotic peptide uptake system. J Biol Chem. 2000;275:3037–41.

    Article  PubMed  CAS  Google Scholar 

  39. Lang VB, Langguth P, Ottiger C, Wunderli-Allenspach H, Rognan D, Rothen-Rutishauser B, et al. Structure-permeation relations of met-enkephalin peptide analogues on absorption and secretion mechanisms in Caco-2 monolayers. J Pharm Sci. 1997;86:846–53.

    Article  PubMed  CAS  Google Scholar 

  40. Tunnemann G, Ter-Avetisyan G, Martin RM, Stockl M, Herrmann A, Cardoso MC. Live-cell analysis of cell penetration ability and toxicity of oligo-arginines. J Pept Sci. 2008;14:469–76.

    Article  PubMed  Google Scholar 

  41. Horn AS, Rodgers JR. Structural and conformational relationships between the enkephalins and the opiates. Nature. 1976;260:795–7.

    Article  PubMed  CAS  Google Scholar 

  42. Winterbourn CC, Parsons-Mair HN, Gebicki S, Gebicki JM, Davies MJ. Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides. Biochem J. 2004;381:241–8.

    Article  PubMed  CAS  Google Scholar 

  43. Zhao K, Luo G, Giannelli S, Szeto HH. Mitochondria-targeted peptide prevents mitochondrial depolarization and apoptosis induced by tert-butyl hydroperoxide in neuronal cell lines. Biochem Pharmacol. 2005;70:1796–806.

    Article  PubMed  CAS  Google Scholar 

  44. Horton KL, Stewart KM, Fonseca SB, Guo Q, Kelley SO. Mitochondria-penetrating peptides. Chem Biol. 2008;15:375–82.

    Article  PubMed  CAS  Google Scholar 

  45. Szeto HH. Mitochondria-targeted cytoprotective peptides for ischemia-reperfusion injury. Antioxid Redox Signal. 2008;10:601–19.

    Article  PubMed  CAS  Google Scholar 

  46. Whiteman M, Spencer JP, Szeto HH, Armstrong JS. Do mitochondriotropic antioxidants prevent chlorinative stress-induced mitochondrial and cellular injury? Antioxid Redox Signal. 2008;10:641–50.

    Article  PubMed  CAS  Google Scholar 

  47. Han Z, Varadharaj S, Giedt RJ, Zweier JL, Szeto HH, Alevriadou BR. Mitochondria-derived reactive oxygen species mediate heme oxygenase-1 expression in sheared endothelial cells. J Pharmacol Exp Ther. 2009;329:94–101.

    Article  PubMed  CAS  Google Scholar 

  48. Fonck C, Baudry M. Rapid reduction of ATP synthesis and lack of free radical formation by MPP+ in rat brain synaptosomes and mitochondria. Brain Res. 2003;975:214–21.

    Article  PubMed  CAS  Google Scholar 

  49. Yang L, Zhao K, Calingasan NY, Luo G, Szeto HH, Beal MF. Mitochondria targeted peptides protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Antioxid Redox Signal. 2009;11:2095–104.

    Article  PubMed  CAS  Google Scholar 

  50. Szeto HH. Development of mitochondria-targeted aromatic-cationic peptides for neurodegenerative diseases. Ann NY Acad Sci. 2008;1147:112–21.

    Article  PubMed  CAS  Google Scholar 

  51. Someya S, Xu J, Kondo K, Ding D, Salvi RJ, Yamasoba T, et al. Age-related hearing loss in C57BL/6J mice is mediated by Bak-dependent mitochondrial apoptosis. Proc Natl Acad Sci USA. 2009;106:19432–7.

    Article  PubMed  CAS  Google Scholar 

  52. Li D, Lai Y, Yue Y, Rabinovitch PS, Hakim C, Duan D. Ectopic catalase expression in mitochondria by adeno-associated virus enhances exercise performance in mice. PLoS ONE. 2009;4:e6673.

    Article  PubMed  Google Scholar 

  53. Anderson EJ, Lustig ME, Boyle KE, Woodlief TL, Kane DA, Lin CT, et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest. 2009;119:573–81.

    Google Scholar 

  54. Kohler JJ, Cucoranu I, Fields E, Green E, He S, Hoying A, et al. Transgenic mitochondrial superoxide dismutase and mitochondrially targeted catalase prevent antiretroviral-induced oxidative stress and cardiomyopathy. Lab Invest. 2009;89:782–90.

    Article  PubMed  CAS  Google Scholar 

  55. Dai DF, Chen T, Szeto H, Nieves-Cintron M, Summer V, Santana LF, et al. Mitochondrial targeted antioxidant peptide ameliorates hypertensive cardiomyopathy. J Am Coll Cardiol. 2011; in press.

  56. Wu D, Soong Y, Zhao GM, Szeto HH. A highly potent peptide analgesic that protects against ischemia-reperfusion-induced myocardial stunning. Am J Physiol Heart Circ Physiol. 2002;283:H783–91.

    PubMed  CAS  Google Scholar 

  57. Song W, Shin J, Lee J, Kim H, Oh D, Edelberg JM, et al. A potent opiate agonist protects against myocardial stunning during myocardial ischemia and reperfusion in rats. Coron Artery Dis. 2005;16:407–10.

    Article  PubMed  Google Scholar 

  58. Cho J, Won K, Wu D, Soong Y, Liu S, Szeto HH, et al. Potent mitochondria-targeted peptides reduce myocardial infarction in rats. Coron Artery Dis. 2007;18:215–20.

    Article  PubMed  Google Scholar 

  59. Szeto HH, Liu S, Soong Y, Wu D, Ganger M, Darrah S, et al. Mitochondria-targeted peptide accelerates ATP recovery and reduces injury following ischemia-reperfusion injury. J Am Soc Nephrol. 2011; in press.

  60. Bavinck NHP, Jimenez N, Millet BA, Szeto HH, Spector JA. SS-31: a mitochondria-specific therapy that provides significant protection against ischemia-reperfusion injury in muscle in vitro and in vivo. Washington, DC: Northeastern Society of Plastic Surgeons; 2010.

    Google Scholar 

  61. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362:59–62.

    Article  PubMed  CAS  Google Scholar 

  62. Petri S, Kiaei M, Damiano M, Hiller A, Wille E, Manfredi G, et al. Cell-permeable peptide antioxidants as a novel therapeutic approach in a mouse model of amyotrophic lateral sclerosis. J Neurochem. 2006;98:1141–8.

    Article  PubMed  CAS  Google Scholar 

  63. Manczak M, Mao P, Calkins MJ, Cornea A, Reddy AP, Murphy MP, et al. Mitochondria-targeted antioxidants protect against amyloid-beta toxicity in Alzheimer’s disease neurons. J Alzheimers Dis. 2010;20 Suppl 2:S609–31.

    PubMed  Google Scholar 

  64. Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358:1327–35.

    Article  PubMed  CAS  Google Scholar 

  65. Powers SK, DeCramer M, Gayan-Ramirez G, Levine S. Pressure support ventilation attenuates ventilator-induced protein modifications in the diaphragm. Crit Care. 2008;12:191.

    Article  PubMed  Google Scholar 

  66. Whidden MA, Smuder AJ, Wu M, Hudson MB, Nelson WB, Powers SK. Oxidative stress is required for mechanical ventilation-induced protease activation in the diaphragm. J Appl Physiol. 2010;108:1376–82.

    Article  PubMed  CAS  Google Scholar 

  67. Powers SK, Hudson MB, Nelson WB, Talbert EE, Min K, Szeto HH, et al. Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness. Crit Care Med. 2011, doi:10.1097/CCM.0b013e3182190b62.

  68. Powers SK, Kavazis AN, McClung JM. Oxidative stress and disuse muscle atrophy. J Appl Physiol. 2007;102:2389–97.

    Article  PubMed  CAS  Google Scholar 

  69. Min K, Smuder AJ, Kwon OS, Kavazis AN, Szeto HH, Powers SK. Mitochondrial-targeted antioxidants attenuate immobilization-induced skeletal muscle atrophy. Anaheim: Experimental Biology; 2010.

    Google Scholar 

  70. Ritov VB, Menshikova EV, Azuma K, Wood R, Toledo FG, Goodpaster BH, et al. Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity. Am J Physiol Endocrinol Metab. 2010;298:E49–58.

    Article  PubMed  CAS  Google Scholar 

  71. Doughan AK, Harrison DG, Dikalov SI. Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res. 2008;102:488–96.

    Article  PubMed  CAS  Google Scholar 

  72. Szeto HH, Lovelace JL, Fridland G, Soong Y, Fasolo J, Wu D, et al. In vivo pharmacokinetics of selective mu-opioid peptide agonists. J Pharmacol Exp Ther. 2001;298:57–61.

    PubMed  CAS  Google Scholar 

  73. Lave T, Dupin S, Schmitt C, Valles B, Ubeaud G, Chou RC, et al. The use of human hepatocytes to select compounds based on their expected hepatic extraction ratios in humans. Pharm Res. 1997;14:152–5.

    Article  PubMed  CAS  Google Scholar 

  74. Thomas DA, Stauffer C, Zhao K, Yang H, Sharma VK, Szeto HH, et al. Mitochondrial targeting with antioxidant peptide SS-31 prevents mitochondrial depolarization, reduces islet cell apoptosis, increases islet cell yield, and improves posttransplantation function. J Am Soc Nephrol. 2007;18:213–22.

    Article  PubMed  CAS  Google Scholar 

  75. Cho S, Szeto HH, Kim E, Kim H, Tolhurst AT, Pinto JT. A novel cell-permeable antioxidant peptide, SS31, attenuates ischemic brain injury by down-regulating CD36. J Biol Chem. 2007;282:4634–42.

    Article  PubMed  CAS  Google Scholar 

Download references

DISCLOSURES

The SS peptides described in this article are licensed for commercial research and development to Stealth Peptides Inc., a clinical stage biopharmaceutical company, in which the authors have financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hazel H. Szeto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szeto, H.H., Schiller, P.W. Novel Therapies Targeting Inner Mitochondrial Membrane—From Discovery to Clinical Development. Pharm Res 28, 2669–2679 (2011). https://doi.org/10.1007/s11095-011-0476-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0476-8

KEY WORDS

Navigation