Skip to main content

Advertisement

Log in

HNF4α is a Crucial Modulator of the Cholesterol-Dependent Regulation of NPC1L1

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Niemann-Pick C1-like 1 (NPC1L1) has been identified as a target of ezetimibe and found to be responsible for intestinal cholesterol absorption. Although, it was recently demonstrated that sterol responsive element binding protein 2 (SREBP2) is responsible for the cholesterol-dependent down-regulation of NPC1L1, the molecular mechanism of NPC1L1 expression is not fully understood. In the present study, we examined the involvement of hepatocyte nuclear factor 4α (HNF4α), a key modulator of lipid metabolism, in the transcriptional regulation of human NPC1L1 gene.

Methods

Reporter gene assays and EMSAs were performed using human NPC1L1 promoter constructs and the effect of siHNF4α was examined.

Results

Transfection of SREBP2 induced the transcriptional activities of NPC1L1 and additional transfection of HNF4α results in a marked stimulation of the activities. Studies with deletion mutants indicated that important elements are located within 264 nt upstream in the human NPC1L1 promoter. In addition, studies with mutations in putative binding sites of HNF4α indicated the existence of binding sites in −209 to −197 and −52 to −40. Moreover, HNF4α knockdown resulted in the reduced expression and regulation by cholesterol.

Conclusions

It is concluded that HNF4α plays a crucial role in the expression and regulation of human NPC1L1 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco’s Modified Eagle Medium

DR:

direct repeat

EMSA:

electrophoretic mobility shift assay

HMG-CoA:

3-hydroxy-3-methyl-glutaryl coenzyme A

HNF4α:

hepatocyte nuclear factor 4α

LDLR:

low density lipoprotein receptor

LXR:

liver X receptor

NF-Y:

nuclear factor-Y

NPC1L1:

Niemann-Pick C1-like 1

25-HCH:

25-hydroxy cholesterol

PGC-1α:

peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α

SRE:

sterol responsive element

SREBP:

sterol responsive element binding protein

References

  1. M. van Heek, D. S. Compton, and H. R. Davis. The cholesterol absorption inhibitor, ezetimibe, decreases diet-induced hypercholesterolemia in monkeys. Eur. J. Pharmacol. 415:79–84 (2001).

    Article  PubMed  Google Scholar 

  2. J. Patel, V. Sheehan, and C. Gurk-Turner. Ezetimibe (Zetia): a new type of lipid-lowering agent. Proc. (Bayl. Univ. Med. Cent.) 16:354–358 (2003).

    Google Scholar 

  3. M. Garcia-Calvo, J. Lisnock, H. G. Bull, B. E. Hawes, D. A. Burnett, M. P. Braun, J. H. Crona, H. R. Davis, D. C. Dean, P. A. Detmers, M. P. Graziano, M. Hughes, D. E. Macintyre, A. Ogawa, K. A. O’Neill, S. P. Iyer, D. E. Shevell, M. M. Smith, Y. S. Tang, A. M. Makarewicz, F. Ujjainwalla, S. W. Altmann, K. T. Chapman, and N. A. Thornberry. The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1). Proc. Natl. Acad. Sci. U. S. A. 102:8132–8137 (2005).

    Article  PubMed  CAS  Google Scholar 

  4. Y. Yamanashi, T. Takada, and H. Suzuki. Niemann-Pick C1-like 1 overexpression facilitates ezetimibe-sensitive cholesterol and beta-sitosterol uptake in CaCo-2 cells. J. Pharmacol. Exp. Ther. 320:559–564 (2007).

    Article  PubMed  CAS  Google Scholar 

  5. S. W. Altmann, H. R. Davis, L. J. Zhu, X. Yao, L. M. Hoos, G. Tetzloff, S. P. Iyer, M. Maguire, A. Golovko, M. Zeng, L. Wang, N. Murgolo, and M. P. Graziano. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science 303:1201–1204 (2004).

    Article  PubMed  CAS  Google Scholar 

  6. R. E. Temel, W. Tang, Y. Ma, L. L. Rudel, M. C. Willingham, Y. A. Ioannou, J. P. Davies, L. M. Nilsson, and L. Yu. Hepatic Niemann-Pick C1-like 1 regulates biliary cholesterol concentration and is a target of ezetimibe. J. Clin. Invest. 117:1968–1978 (2007).

    Article  PubMed  CAS  Google Scholar 

  7. C. Duval, V. Touche, A. Tailleux, J. C. Fruchart, C. Fievet, V. Clavey, B. Staels, and S. Lestavel. Niemann-Pick C1 like 1 gene expression is down-regulated by LXR activators in the intestine. Biochem. Biophys. Res. Commun. 340:1259–1263 (2006).

    Article  PubMed  CAS  Google Scholar 

  8. J. N. van der Veen, J. K. Kruit, R. Havinga, J. F. Baller, G. Chimini, S. Lestavel, B. Staels, P. H. Groot, A. K. Groen, and F. Kuipers. Reduced cholesterol absorption upon PPARdelta activation coincides with decreased intestinal expression of NPC1L1. J. Lipid Res. 46:526–534 (2005).

    Article  PubMed  Google Scholar 

  9. W. A. Alrefai, F. Annaba, Z. Sarwar, A. Dwivedi, S. Saksena, A. Singla, P. K. Dudeja, and R. K. Gill. Modulation of human Niemann-Pick C1-like 1 gene expression by sterol: role of sterol regulatory element binding protein 2. Am. J. Physiol. Gastrointest. Liver Physiol. 292:G369–G376 (2007).

    Article  PubMed  CAS  Google Scholar 

  10. J. P. Davies, B. Levy, and Y. A. Ioannou. Evidence for a Niemann-pick C (NPC) gene family: identification and characterization of NPC1L1. Genomics 65:137–145 (2000).

    Article  PubMed  CAS  Google Scholar 

  11. S. Jiang, T. Tanaka, H. Iwanari, H. Hotta, H. Yamashita, J. Kumakura, Y. Watanabe, Y. Uchiyama, H. Aburatani, T. Hamakubo, T. Kodama, and M. Naito. Expression and localization of P1 promoter-driven hepatocyte nuclear factor-4alpha (HNF4alpha) isoforms in human and rats. Nucl. Recept. 1:5(2003).

    Article  PubMed  Google Scholar 

  12. M. Saborowski, G. A. Kullak-Ublick, and J. J. Eloranta. The human organic cation transporter-1 gene is transactivated by hepatocyte nuclear factor-4alpha. J. Pharmacol. Exp. Ther. 317:778–785 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. Y. Kamiyama, T. Matsubara, K. Yoshinari, K. Nagata, H. Kamimura, and Y. Yamazoe. Role of human hepatocyte nuclear factor 4alpha in the expression of drug-metabolizing enzymes and transporters in human hepatocytes assessed by use of small interfering RNA. Drug Metab. Pharmacokinet. 22:287–298 (2007).

    Article  PubMed  CAS  Google Scholar 

  14. K. Ogasawara, T. Terada, J. Asaka, T. Katsura, and K. Inui. Hepatocyte nuclear factor-4{alpha} regulates the human organic anion transporter 1 gene in the kidney. Am. J. Physiol. Renal Physiol. 292:F1819–F1826 (2007).

    Article  PubMed  CAS  Google Scholar 

  15. K. Misawa, T. Horiba, N. Arimura, Y. Hirano, J. Inoue, N. Emoto, H. Shimano, M. Shimizu, and R. Sato. Sterol regulatory element-binding protein-2 interacts with hepatocyte nuclear factor-4 to enhance sterol isomerase gene expression in hepatocytes. J. Biol. Chem. 278:36176–36182 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. G. P. Hayhurst, Y. H. Lee, G. Lambert, J. M. Ward, and F. J. Gonzalez. Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol. Cell. Biol. 21:1393–1403 (2001).

    Article  PubMed  CAS  Google Scholar 

  17. M. Okuwaki, T. Takada, Y. Iwayanagi, S. Koh, Y. Kariya, H. Fujii, and H. Suzuki. LXR alpha transactivates mouse organic solute transporter alpha and beta via IR-1 elements shared with FXR. Pharm. Res. 24:390–398 (2007).

    Article  PubMed  CAS  Google Scholar 

  18. K. Sumi, T. Tanaka, A. Uchida, K. Magoori, Y. Urashima, R. Ohashi, H. Ohguchi, M. Okamura, H. Kudo, K. Daigo, T. Maejima, N. Kojima, I. Sakakibara, S. Jiang, G. Hasegawa, I. Kim, T. F. Osborne, M. Naito, F. J. Gonzalez, T. Hamakubo, T. Kodama, and J. Sakai. Cooperative interaction between hepatocyte nuclear factor 4{alpha} and GATA transcription factors regulates ATP-binding cassette sterol transporters ABCG5 and ABCG8. Mol. Cell Biol. 27:4248–4260 (2007).

    Google Scholar 

  19. D. B. Jump, D. Botolin, Y. Wang, J. Xu, B. Christian, and O. Demeure. Fatty acid regulation of hepatic gene transcription. J. Nutr. 135:2503–2506 (2005).

    PubMed  CAS  Google Scholar 

  20. A. Ueda, F. Takeshita, S. Yamashiro, and T. Yoshimura. Positive regulation of the human macrophage stimulating protein gene transcription. Identification of a new hepatocyte nuclear factor-4 (HNF-4) binding element and evidence that indicates direct association between NF-Y and HNF-4. J. Biol. Chem. 273:19339–19347 (1998).

    Article  PubMed  CAS  Google Scholar 

  21. D. Eberle, B. Hegarty, P. Bossard, P. Ferre, and F. Foufelle. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie. 86:839–848 (2004).

    Article  PubMed  CAS  Google Scholar 

  22. T. Yamamoto, H. Shimano, Y. Nakagawa, T. Ide, N. Yahagi, T. Matsuzaka, M. Nakakuki, A. Takahashi, H. Suzuki, H. Sone, H. Toyoshima, R. Sato, and N. Yamada. SREBP-1 interacts with hepatocyte nuclear factor-4 alpha and interferes with PGC-1 recruitment to suppress hepatic gluconeogenic genes. J. Biol. Chem. 279:12027–12035 (2004).

    Article  PubMed  CAS  Google Scholar 

  23. S. Lally, D. Owens, and G. H. Tomkin. Genes that affect cholesterol synthesis, cholesterol absorption, and chylomicron assembly: the relationship between the liver and intestine in control and streptozotosin diabetic rats. Metabolism 56:430–438 (2007).

    Article  PubMed  CAS  Google Scholar 

  24. S. Lally, C. Y. Tan, D. Owens, and G. H. Tomkin. Messenger RNA levels of genes involved in dysregulation of postprandial lipoproteins in type 2 diabetes: the role of Niemann-Pick C1-like 1, ATP-binding cassette, transporters G5 and G8, and of microsomal triglyceride transfer protein. Diabetologia 49:1008–1016 (2006).

    Article  PubMed  CAS  Google Scholar 

  25. B. N. Finck, and D. P. Kelly. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest. 116:615–622 (2006).

    Article  PubMed  CAS  Google Scholar 

  26. J. Rhee, Y. Inoue, J. C. Yoon, P. Puigserver, M. Fan, F. J. Gonzalez, and B. M. Spiegelman. Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc. Natl. Acad. Sci. U. S. A. 100:4012–4017 (2003).

    Article  PubMed  CAS  Google Scholar 

  27. N. L. Young, D. R. Lopez, and D. J. McNamara. Contributions of absorbed dietary cholesterol and cholesterol synthesized in small intestine to hypercholesterolemia in diabetic rats. Diabetes 37:1151–1156 (1988).

    Article  PubMed  CAS  Google Scholar 

  28. H. Gylling, J. A. Tuominen, V. A. Koivisto, and T. A. Miettinen. Cholesterol metabolism in type 1 diabetes. Diabetes 53:2217–2222 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from The Japanese Ministry of Education, Science, Sports and Culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tappei Takada.

Additional information

Yuki Iwayanagi and Tappei Takada are equally contributed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwayanagi, Y., Takada, T. & Suzuki, H. HNF4α is a Crucial Modulator of the Cholesterol-Dependent Regulation of NPC1L1. Pharm Res 25, 1134–1141 (2008). https://doi.org/10.1007/s11095-007-9496-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9496-9

Key words

Navigation