Skip to main content
Log in

Stabilizing Effect of Four Types of Disaccharide on the Enzymatic Activity of Freeze-dried Lactate Dehydrogenase: Step by Step Evaluation from Freezing to Storage

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

In order to understand the stabilizing effects of disaccharides on freeze-dried proteins, the enzymatic activity of lactate dehydrogenase (LDH) formulations containing four types of disaccharide (trehalose, sucrose, maltose, and lactose) at two relative humidity (RH) levels (about 0 and 32.8%) was investigated after three processes: freeze-thawing, freeze-drying, and storage at three temperatures (20, 40, and 60°C) above and/or below the glass transition temperature (T g).

Materials and Methods

The enzymatic activity was determined from the absorbance at 340 nm, and T g of the samples was investigated by differential scanning calorimetry.

Results

At each RH condition, T g values of sucrose formulations were lower than those of other formulations. Although effects of the disaccharides on the process stability of LDH were comparable, storage stability was dependent on the type of disaccharide. All the formulations were destabilized significantly during storage at temperature above T g. During storage at temperature below T g, the LDH activity decreased with increases in the storage temperature and moisture. Maltose and lactose formulations showed significant destabilization with the change of color to browning.

Conclusions

Taking the storage stability of freeze-dried proteins under the various conditions (temperature and RH) into consideration, trehalose is better suited as the stabilizer than other disaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

DSC:

differential scanning calorimetry

LDH:

lactate dehydrogenase

PFK:

phosphofructokinase

RH:

relative humidity (%)

T g :

glass transition temperature (°C)

References

  1. J. F. Carpenter, M. J. Pikal, B. S. Chang, and T. W. Randolph. Rational design of stable lyophilized protein formulations: some practical advice. Pharm. Res. 14:969–975 (1997).

    Article  PubMed  CAS  Google Scholar 

  2. W. Wang. Lyophilization and development of solid protein pharmaceuticals. Int. J. Pharm. 203:1–60 (2000).

    Article  PubMed  CAS  Google Scholar 

  3. T. Arakawa, S. J. Prestrelsky, W. C. Kenney, and J. F. Carpenter. Factors affecting short-term and long-term stabilities of proteins. Adv. Drug Deliv. Rev. 46:307–326 (2001).

    Article  PubMed  CAS  Google Scholar 

  4. J. H. Crowe, J. F. Carpenter, L. M. Crowe, and T. J. Anchordoguy. Are freezing and dehydration similar stress vectors? A comparison of modes of interaction of stabilizing solutes with biomolecules. Cryobiology 27:219–231 (1990).

    Article  CAS  Google Scholar 

  5. T. Arakawa, Y. Kita, and J. F. Carpenter. Protein-solvent interactions in pharmaceutical formulations. Pharm. Res. 8:285–291 (1991).

    Article  PubMed  CAS  Google Scholar 

  6. F. Franks. Freeze drying: from empiricism to predictability. Cryo-Lett. 11:93–110 (1990).

    Google Scholar 

  7. H. Levine and L. Slade. Principles of “cryostabilization” technology from structure/property relationships of carbohydrate/water system—a review. Cryo-Lett. 9:21–63 (1988).

    CAS  Google Scholar 

  8. Y. H. Roos. Phase Transitions in Foods. Academic, San Diego, CA, 1995.

    Google Scholar 

  9. K. Izutsu, S. Yoshioka, and Y. Takeda. The effects of additives on the stability of freeze-dried β-galactosidase stored at elevated temperature. Int. J. Pharm. 71:137–146 (1991).

    Article  CAS  Google Scholar 

  10. J. H. Crowe, S. B. Leslie, and L. M. Crowe. Is vitrification sufficient to preserve liposomes during freeze-drying? Cryobiology 31:355–366 (1994).

    Article  PubMed  CAS  Google Scholar 

  11. S. Ohtake, C. Schebor, S. P. Palecek, and J. J. de Pablo. Effect of sugar-phosphate mixtures on the stability of DPPC membranes in dehydrated systems. Cryobiology 48:81–89 (2004).

    Article  PubMed  CAS  Google Scholar 

  12. J. F. Carpenter, L. M. Crowe, and J. H. Crowe. Stabilization of phosphofructokinase with sugars during freeze-drying: characterization of enhanced protection in the presence of divalent cations. Biochim. Biophys. Acta 923:109–115 (1987).

    PubMed  CAS  Google Scholar 

  13. J. F. Carpenter and J. H. Crowe. An infrared spectoroscopic study of the interactions of carbohydrates with dried proteins. Biochem. 28:3916–3922 (1989).

    Article  CAS  Google Scholar 

  14. K. Tanaka, T. Takeda, and K. Miyajima. Cryoprotective effect of saccharides on denaturation of catalase by freeze-drying. Chem. Pharm. Bull. 39:1091–1094 (1991).

    CAS  Google Scholar 

  15. J. F. Carpenter, S. J. Prestrelski, and T. Arakawa. Separation of freezing- and drying-induced denaturation of lyophilized proteins using stress-specific stabilization. 1. Enzyme activity and calorimetric studies. Arch. Biochem. Biophys. 303:456–464 (1993).

    Article  PubMed  CAS  Google Scholar 

  16. S. J. Prestrelski, T. Arakawa, and J. F. Carpenter. Separation of freezing- and drying-induced denaturation of lyophilized proteins using stress-specific stabilization II. Structural studies using infrared spectroscopy. Arch. Biochem. Biophys. 303:465–473 (1993).

    Article  PubMed  CAS  Google Scholar 

  17. S. J. Prestrelski, N. Tedeschi, T. Arakawa, and J. F. Carpenter. Dehydration-induced conformational transition in proteins and their inhibition by stabilizers. Biophys. J. 65:661–671 (1993).

    Article  PubMed  CAS  Google Scholar 

  18. B. S. Chang, R. M. Beauvais, A. Dong, and J. F. Carpenter. Physical factors affecting the storage stability of freeze-dried interleukin-1 receptor antagonist: glass transition and protein conformation. Arch. Biochem. Biophys. 331:249–258 (1996).

    Article  PubMed  CAS  Google Scholar 

  19. C. Schebor, L. Burin, M. P. Buera, J. M. Aguilera, and J. Chirife. Glassy state and thermal inactivation of invertase and lactase in dried amorphous matrices. Biotechnol. Prog. 13:857–863 (1997).

    Article  PubMed  CAS  Google Scholar 

  20. J. G. Sampedro, G. Guerra, J.-P. Pardo, and S. Uribe. Trehalose-mediated protection of the plasma membrne H+-ATPase from Kluyveromyces lactis during freeze-drying and rehydration. Cryobiology 37:131–138 (1998).

    Article  PubMed  CAS  Google Scholar 

  21. L. Kreilgaard, S. Frokjaer, J. M. Flink, T. W. Randolph, and J. F. Carpenter. Effects of Additives on the stability of recombinant human factor XIII during freeze-drying and storage in the dried solid. Arch. Biochem. Biophys. 360:121–134 (1998).

    Article  PubMed  CAS  Google Scholar 

  22. B. Lueckel, B. Helk, D. Bodmer, and H. Leuenberger. Effects of formulation and process variables on the aggregation of freeze-dried interleukin-6 (IL-6) after lyophilization and on storage. Pharm. Dev. Technol. 3:337–346 (1998).

    Article  PubMed  CAS  Google Scholar 

  23. T. Suzuki, K. Imamura, H. Fujimoto, and M. Okazaki. Relation between thermal stabilizing effect of sucrose on LDH and sucrose-LDH hydrogen bond. J. Chem. Eng. Jpn. 31:565–570 (1998).

    Article  CAS  Google Scholar 

  24. D. P. Miller, R. E. Anderson, and J. J. de Pablo. Stabilization of lactate dehydrogenase following freeze-thawing and vacuum-drying in the presence of trehalose and borate. Pharm. Res. 15:1215–1221 (1998).

    Article  PubMed  CAS  Google Scholar 

  25. S. D. Allison, B. Chang, T. W. Randolph, and J. F. Carpenter. Hydrogen bonding between sugar and protein is responsible for inhibition of dehydration-induced protein unfolding. Arch. Biochem. Biophys. 365:289–298 (1999).

    Article  PubMed  CAS  Google Scholar 

  26. E. D. Breen, J. G. Curley, E. D. Overcashier, C. C. Hsu, and S. J. Shire. Effect of moisture on the stability of a lyophilized humanized monoclonal antibody formulation. Pharm. Res. 18:1345–1353 (2001).

    Article  PubMed  CAS  Google Scholar 

  27. T. J. Anchordoquy, K. Izutsu, T. W. Randolph, and J. F. Carpenter. Maintenance of quaternary structure in the frozen state stabilizes lactate dehydrogenase during freeze-drying. Arch. Biochem. Biophys. 390:35–41 (2001).

    Article  PubMed  CAS  Google Scholar 

  28. K. Imamura, T. Ogawa, T. Sakiyama, and K. Nakanishi. Effects of types of sugar on the stabilization of protein in the dried state. J. Pharm. Sci. 92:266–274 (2003).

    Article  PubMed  CAS  Google Scholar 

  29. Y. Liao, M. B. Brown, and G. P. Martin. Investigation of the stabilization of freeze-dried lysozyme and the physical properties of the formulations. Eur. J. Pharm. Biopharm. 58:15–24 (2004).

    Article  PubMed  CAS  Google Scholar 

  30. S. Passot, F. Fonseca, M. Alarcon-Lorca, D. Rolland, and M. Marin. Physical characterization of formulations for the development of two stable freeze-dried proteins during both dried and liquid storage. Eur. J. Pharm. Biopharm. 60:335–348 (2005).

    Article  PubMed  CAS  Google Scholar 

  31. L. Chang, D. Shepherd, J. Sun, D. Ouellette, K. L. Grant, X. Tang, and M. J. Pikal. Mechanism of protein stabilization by sugars during freeze-drying and storage: native structure preservation, specific interaction, and/or immobilization in a glassy matrix? J. Pharm. Sci. 94:1427–1444 (2005).

    Article  PubMed  CAS  Google Scholar 

  32. K. Kawai, T. Hagiwara, R. Takai, and T. Suzuki. The role of residual water for the stability of protein freeze-dried with trehalose. In M. P. Buera, J. Welti-Chanes, P. J. Lillford, and H. R. Corti (eds.), Water Properties of Food, Pharmaceutical, and Biological Materials, CRC Press, Boca Raton, 2006, pp. 543–550.

  33. K. Kawai, T. Hagiwara, R. Takai, and T. Suzuki. Comparative investigation by two analytical approaches of enthalpy relaxation for glassy glucose, sucrose, maltose and trehalose. Pharm. Res. 22:490–495 (2005).

    Article  PubMed  CAS  Google Scholar 

  34. R. Urbani, F. Sussich, S. Prejac, and A. Cesàro. Enthalpy relaxation and glass transition behavior of sucrose by static and dynamic DSC. Thermochim. Acta 304/305:359–367 (1997).

    Article  CAS  Google Scholar 

  35. S. Ohtake, C. Schebor, S. P. Palecek, and J. J. de Pablo. Effect of pH, counter ion, and phosphate concentration on the glass transition temperature of freeze-dried sugar-phosphate mixtures. Pharm. Res. 21:1615–1621 (2004).

    Article  PubMed  CAS  Google Scholar 

  36. R. Surana, A. Pyne, and R. Suryanarayanan. Effect of aging on the physical properties of amorphous trehalose. Pharm. Res. 21:867–874 (2004).

    Article  PubMed  CAS  Google Scholar 

  37. T. J. Anchordoquy and J. F. Carpenter. Polymers protect lactate dehydrogenase during freeze-drying by inhibiting dissociation in the frozen state. Arch. Biochem. Biophys. 332:231–238 (1996).

    Article  PubMed  CAS  Google Scholar 

  38. S. Jiang and S. L. Nail. Effect of process conditions on recovery of protein activity after freezing and freeze-drying. Eur. J. Pharm. Biopharm. 45:249–257 (1998).

    Article  PubMed  CAS  Google Scholar 

  39. K. C. Fox. Putting proteins under glass. Science 267:1922–1923 (1995).

    Article  PubMed  CAS  Google Scholar 

  40. J. L. Green and C. A. Angell. Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly. J. Phys. Chem. 93:2880–2882 (1989).

    Article  CAS  Google Scholar 

  41. A. Patist and H. Zoerb. Preservation mechanisms of trehalose in food and biosystems. Colloids Surf., B Biointerfaces 40:107–113 (2005).

    Article  CAS  Google Scholar 

  42. K. Kawai, T. Hagiwara, R. Takai, and T. Suzuki. Maillard reaction rate in various glassy matrices. Biosci. Biotechnol. Biochem. 68:2285–2288 (2004).

    Article  PubMed  CAS  Google Scholar 

  43. K. Kawai, T. Hagiwara, R. Takai, and T. Suzuki. The rate of non-enzymatic browning reaction in model freeze-dried food system under the glassy state. Innov. Food Sci. Emerg. Technol. 6:346–350 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from a Grant-in-Aid for JSPS Fellows provided by The Ministry of Education, Culture, Sports, Science and Technology. The authors would also like to thank Drs. Rikuo Takai and Tomoaki Hagiwara of the Tokyo University of Marine Science and Technology for their valuable discussions, Drs. Munehiko Tanaka and Shoichiro Ishizaki of the Tokyo University of Marine Science and Technology for the use of UV-spectrometer, and Dr. Hiroto Chaen of Hayashibara Biochemical Lab. Inc., Japan, for providing the trehalose dihydrate reagent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Kawai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawai, K., Suzuki, T. Stabilizing Effect of Four Types of Disaccharide on the Enzymatic Activity of Freeze-dried Lactate Dehydrogenase: Step by Step Evaluation from Freezing to Storage. Pharm Res 24, 1883–1890 (2007). https://doi.org/10.1007/s11095-007-9312-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9312-6

Key words

Navigation