Skip to main content

Advertisement

Log in

Pharmacokinetics and Modeling of Quercetin and Metabolites

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

To determine the pharmacokinetics of quercetin and its glucuronide/sulfate conjugates and to develop a pharmacokinetic model to simultaneously describe their disposition after intravenous and oral administration in rats.

Methods

After oral, intraportal, and intravenous administration of quercetin, serial plasma, urine, and fecal concentrations of quercetin and its conjugates were determined by an HPLC method. Enterohepatic recirculation was evaluated in a linked-rat model as well as after oral administration of bile containing quercetin and its metabolites. Based on the experimental data, a specific compartmental model was developed and validated to describe and predict the plasma concentration-time profiles of quercetin and its conjugates after oral and intravenous administration.

Results

Only 5.3% of unchanged quercetin was bioavailable, although the total quercetin absorbed was as high as 59.1%. After oral administration, about 93.3% of quercetin was metabolized in the gut, with only 3.1% metabolized in the liver. No significant enterohepatic recirculation was observed for both quercetin and its conjugated metabolites. The pharmacokinetic model fitted well the observed data of quercetin and its conjugates.

Conclusions

Our study clarifies the relative importance of the gut, liver, and bile in the metabolism and excretion of quercetin and its conjugates. The pharmacokinetic model appears to be suitable for describing the absorption and disposition of the quercetin and its conjugates and may be applicable to other flavonoids that undergo similar pharmacokinetic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Crozier M. E. J. Lean M. S. McDonald C. Black (1997) ArticleTitleQuantitative analysis of the flavonoid content of commercial tomatoes, onions, lettuce, and celery J. Agric. Food Chem. 45 590–595 Occurrence Handle1:CAS:528:DyaK2sXhtlaksrs%3D

    CAS  Google Scholar 

  2. L. Bravo (1998) ArticleTitlePolyphenols: chemistry, dietary sources, metabolism, and nutritional significance Nutr. Rev. 56 317–333 Occurrence Handle1:STN:280:DyaK1M%2Fls1WktQ%3D%3D Occurrence Handle9838798

    CAS  PubMed  Google Scholar 

  3. W. Zheng S. Y. Wang (2001) ArticleTitleAntioxidant activity and phenolic compounds in selected herbs J. Agric. Food Chem. 49 5165–5470 Occurrence Handle1:CAS:528:DC%2BD3MXntVyntL0%3D Occurrence Handle11714298

    CAS  PubMed  Google Scholar 

  4. M. G. L. Hertog P. C. H. Hollman (1996) ArticleTitlePotential health effects of the dietary flavonol quercetin Eur. J. Clin. Nutr. 50 63–71 Occurrence Handle1:STN:280:BymB3MbjtFM%3D Occurrence Handle8641249

    CAS  PubMed  Google Scholar 

  5. J. V. Formica W. Regelson (1995) ArticleTitleReview of the biology of quercetin and related bioflavonoids Food Chem. Toxicol. 33 1061–1080 Occurrence Handle1:CAS:528:DyaK28Xht1Cgsw%3D%3D Occurrence Handle8847003

    CAS  PubMed  Google Scholar 

  6. D. A. Shoskes S. I. Zeitlin A. Shahed J. Rajfer (1999) ArticleTitleQuercetin in men with category III chronic prostatitis: a preliminary prospective, double-blind, placebo-controlled trial Urology 54 960–963 Occurrence Handle1:STN:280:DC%2BD3c%2FmvVWruw%3D%3D Occurrence Handle10604689

    CAS  PubMed  Google Scholar 

  7. F. Katske D. A. Shoskes M. Sender R. Poliakin K. Gagliano J. Rajfer (2001) ArticleTitleTreatment of interstitial cystitis with a quercetin supplement Tech. Urol. 7 44–46 Occurrence Handle1:STN:280:DC%2BD3M7nt1CltA%3D%3D Occurrence Handle11272677

    CAS  PubMed  Google Scholar 

  8. E. U. Graefe H. Derendorf M. Veit (1999) ArticleTitlePharmacokinetics and bioavailability of the flavonol quercetin in humans Int. J. Clin. Pharmacol. Ther. 37 219–233 Occurrence Handle1:CAS:528:DyaK1MXjtVCitb0%3D Occurrence Handle10363620

    CAS  PubMed  Google Scholar 

  9. P. Ader A. Wessmann S. Wolffram (2000) ArticleTitleBioavailability and metabolism of the flavonol quercetin in the pig Free Radic. Biol. Med. 28 1056–1067 Occurrence Handle1:CAS:528:DC%2BD3cXjs1Cgt7o%3D Occurrence Handle10832067

    CAS  PubMed  Google Scholar 

  10. E. J. Oliveira D. G. Watson M. H. Grant (2002) ArticleTitleMetabolism of quercetin and kaempferol by rat hepatocytes and the identification of flavonoid glycosides in human plasma Xenobiotica 32 279–287 Occurrence Handle1:CAS:528:DC%2BD38XksVGkur8%3D Occurrence Handle12028662

    CAS  PubMed  Google Scholar 

  11. Y. Liu Y. Liu Y. Dai L. Xun M. Hu (2003) ArticleTitleEnteric disposition and recycling of flavonoids and ginkgo flavonoids J. Altern. Complement. Med. 9 631–640 Occurrence Handle14629841

    PubMed  Google Scholar 

  12. J. A. Conquer G. Maiani E. Azzini A. Raguzzini B. J. Holub (1998) ArticleTitleSupplementation with quercetin markedly increases plasma quercetin concentration without effect on selected risk factors for heart disease in healthy subjects J. Nutr. 128 593–597 Occurrence Handle1:CAS:528:DyaK1cXhs1Wms70%3D Occurrence Handle9482769

    CAS  PubMed  Google Scholar 

  13. J. Nishigaki S. Suzuki J. Yui A. Shigematsu (1995) ArticleTitleDistribution volume of three 99mTc-labeled compounds in the rat liver with time after intraportal and intravenous injections Biol. Pharm. Bull. 18 1705–1709 Occurrence Handle1:CAS:528:DyaK28XisFShsw%3D%3D Occurrence Handle8787792

    CAS  PubMed  Google Scholar 

  14. J. Nishigaki Y. Suzuki A. Shigematsu (1998) ArticleTitleA novel method for measuring the hepatic first-pass effect and metabolic rate of L-3,4-dihydroxyphenylalanine (DOPA), diazepam and inulin in rat liver Biol. Pharm. Bull. 21 735–740 Occurrence Handle1:CAS:528:DyaK1cXkslyju7s%3D Occurrence Handle9703259

    CAS  PubMed  Google Scholar 

  15. J. F. Marier P. Vachon A. Gritsas J. Zhang J. P. Moreau M. P. Ducharme (2002) ArticleTitleMetabolism and disposition of resveratrol in rats: extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model J. Pharmacol. Exp. Ther. 302 369–373 Occurrence Handle1:CAS:528:DC%2BD38Xlt1SnsLg%3D Occurrence Handle12065739

    CAS  PubMed  Google Scholar 

  16. S. Ueda K. Yamaoka T. Nakagawa (1999) ArticleTitleEffect of pentobarbital anaesthesia on intestinal absorption and hepatic first-pass metabolism of oxacillin in rats, evaluated by portal-systemic concentration difference J. Pharm. Pharmacol. 51 585–589 Occurrence Handle1:CAS:528:DyaK1MXksVKhtbg%3D Occurrence Handle10411218

    CAS  PubMed  Google Scholar 

  17. D. J. Hoffman T. Seifert A. Borre H. N. Nellans (1995) ArticleTitleMethod to estimate the rate and extent of intestinal absorption in conscious rats using an absorption probe and portal blood sampling Pharm. Res. 12 889–894 Occurrence Handle1:CAS:528:DyaK2MXmtFSjsr4%3D Occurrence Handle7667196

    CAS  PubMed  Google Scholar 

  18. I. Erlund G. Alfthan H. Siren K. Ariniemi A. Aro (1999) ArticleTitleValidated method for the quantitation of quercetin from human plasma using high-performance liquid chromatography with electrochemical detection J. Chromatogr. B Biomed. Sci. Appl. 727 179–189 Occurrence Handle1:CAS:528:DyaK1MXjsVWnsL4%3D Occurrence Handle10360437

    CAS  PubMed  Google Scholar 

  19. Y. C. Hou P. D. Chao H. J. Ho C. C. Wen S. L. Hsiu (2003) ArticleTitleProfound difference in pharmacokinetics between morin and its isomer quercetin in rats J. Pharm. Pharmacol. 55 199–203 Occurrence Handle1:CAS:528:DC%2BD3sXisVOjsLs%3D Occurrence Handle12631412

    CAS  PubMed  Google Scholar 

  20. L. B. Sheiner S. L. Beal (1981) ArticleTitleSome suggestions for measuring predictive performance J. Pharmacokinet. Biopharm. 9 503–512 Occurrence Handle1:STN:280:Bi2D2sjlvV0%3D Occurrence Handle7310648

    CAS  PubMed  Google Scholar 

  21. C. Manach O. Texier C. Morand V. Crespy F. Regerat C. Demigne C. Remesy (1999) ArticleTitleComparison of the bioavailability of quercetin and catechin in rats Free Radic. Biol. Med. 27 1259– 1266 Occurrence Handle1:CAS:528:DC%2BD3cXot1Cq Occurrence Handle10641719

    CAS  PubMed  Google Scholar 

  22. C. Manach C. Morand V. Crespy C. Demigne O. Texier F. Regerat C. Remesy (1998) ArticleTitleQuercetin is recovered in human plasma as conjugated derivatives which retain antioxidant properties FEBS Lett. 426 331–336 Occurrence Handle1:CAS:528:DyaK1cXitlSkurc%3D Occurrence Handle9600261

    CAS  PubMed  Google Scholar 

  23. C. Morand V. Crespy C. Manach C. Besson C. Demigne C. Remesy (1998) ArticleTitlePlasma metabolites of quercetin and their antioxidant properties Am. J. Physiol. 275 R212–R219 Occurrence Handle1:CAS:528:DyaK1cXkvFaqsbc%3D Occurrence Handle9688981

    CAS  PubMed  Google Scholar 

  24. I. Ueno N. Nakano I. Hirono (1983) ArticleTitleMetabolic fate of 14C-quercetin in the ACI rat Jpn. J. Exp. Med. 53 41–50 Occurrence Handle1:CAS:528:DyaL3sXktFKjsLk%3D Occurrence Handle6876476

    CAS  PubMed  Google Scholar 

  25. R. Gugler M. Leschik H. J. Dengler (1975) ArticleTitleDisposition of quercetin in man after single oral and intravenous doses Eur. J. Clin. Pharmacol. 9 229–234 Occurrence Handle1:CAS:528:DyaE28XhtFGlsrs%3D Occurrence Handle1233267

    CAS  PubMed  Google Scholar 

  26. D. R. Ferry A. Smith J. Malkhandi D. W. Fyfe P. G. Takats Particlede D. Anderson J. Baker D. J. Kerr (1996) ArticleTitlePhase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition Clin. Cancer Res. 2 659–668 Occurrence Handle1:CAS:528:DyaK28Xis1Wltbg%3D Occurrence Handle9816216

    CAS  PubMed  Google Scholar 

  27. T. Walle U. K. Walle P. V. Halushka (2001) ArticleTitleCarbon dioxide is the major metabolite of quercetin in humans J. Nutr. 131 2648– 2652 Occurrence Handle1:CAS:528:DC%2BD3MXnsFKktbg%3D Occurrence Handle11584085

    CAS  PubMed  Google Scholar 

  28. A. R. Rechner G. Kuhnle P. Bremner G. P. Hubbard K. P. Moore C. A. Rice-Evans (2002) ArticleTitleThe metabolic fate of dietary polyphenols in humans Free Radic. Biol. Med. 33 220–235 Occurrence Handle1:CAS:528:DC%2BD38XmsVekt7c%3D Occurrence Handle12106818

    CAS  PubMed  Google Scholar 

  29. H. P. Noteborn E. Jansen S. Benito M. J. Mengelers (1997) ArticleTitleOral absorption and metabolism of quercetin and sugar-conjugated derivatives in specific transport systems Cancer Lett. 114 175–177 Occurrence Handle1:CAS:528:DyaK2sXit1ehsLc%3D Occurrence Handle9103284

    CAS  PubMed  Google Scholar 

  30. K. A. Khaled Y. M. El-Sayed B. M. Al-Hadiya (2003) ArticleTitleDisposition of the flavonoid quercetin in rats after single intravenous and oral doses Drug Dev. Ind. Pharm. 29 397–403 Occurrence Handle1:CAS:528:DC%2BD3sXjsFCrtLg%3D Occurrence Handle12737533

    CAS  PubMed  Google Scholar 

  31. P. C. Hollman J. M. Trijp Particlevan M. J. Mengelers J. H. Vries Particlede M. B. Katan (1997) ArticleTitleBioavailability of the dietary antioxidant flavonol quercetin in man Cancer Lett. 114 139–140 Occurrence Handle1:CAS:528:DyaK2sXit1ehsL4%3D Occurrence Handle9103273

    CAS  PubMed  Google Scholar 

  32. J. M. Hof ParticleVan Den (1998) ArticleTitleStructural identifiability of linear compartmental system IEEE Trans. Automat. Contr. 43 800–818

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moses S. S. Chow.

Mass Balance of Each Compartment

Mass Balance of Each Compartment

The differential equations for the change of amount \( {\left( {\frac{{dX}} {{dt}}} \right)} \) of substance with time in each compartment following an iv dose are shown as follows:

$$ \frac{{dX_{1} }} {{dt}} = - {\left( {K_{{12}} + K_{f} + K_{{10}} } \right)}X_{1} + K_{{21}} X_{2} $$
(A1)
$$ \frac{{dX_{2} }} {{dt}} = K_{{12}} X_{1} - K_{{21}} X_{2} $$
(A2)
$$ \frac{{dX_{3} }} {{dt}} = K_{f} X_{1} - {\left( {K_{{34}} + K_{{30}} } \right)}X_{3} + K_{{43}} X_{4} $$
(A3)
$$ \frac{{dX_{4} }} {{dt}} = K_{{34}} X_{3} - K_{{43}} X_{4} $$
(A4)

where \( \frac{{dX_{1} }} {{dt}} \), \( \frac{{dX_{2} }} {{dt}} \), \( \frac{{dX_{3} }} {{dt}} \), and \( \frac{{dX_{4} }} {{dt}} \) are the change of amount of substance with time in compartments 1, 2, 3, and 4 respectively, and other terms have been described previously.

The differential equations for this model with an oral dose are shown as follows:

$$ \frac{{dX_{{g1}} + dX_{{g2}} }} {{dt}} = - {\left( {K_{{a1}} X_{{g1}} + K_{{a2}} X_{{g2}} } \right)} $$
(A5)
$$ \frac{{dX_{1} }} {{dt}} = K_{{a1}} X_{{g1}} - {\left( {K_{{12}} + K_{f} + K_{{10}} } \right)}X_{1} + K_{{21}} X_{2} $$
(A6)
$$ \frac{{dX_{2} }} {{dt}} = K_{{12}} X_{1} - K_{{21}} X_{2} $$
(A7)
$$ \frac{{dX_{3} }} {{dt}} = K_{{a2}} X_{{g2}} + K_{f} X_{1} - {\left( {K_{{34}} + K_{{30}} } \right)}X_{3} + K_{{43}} X_{4} $$
(A8)
$$ \frac{{dX_{4} }} {{dt}} = K_{{34}} X_{3} - K_{{43}} X_{4} $$
(A9)

where \( \frac{{dX_{{g1}} }} {{dt}} \) and \( \frac{{dX_{{g2}} }} {{dt}} \) are the change of amount of substance with time in the gut for the parent drug and metabolites to be absorbed, so that at time 0, Xg1 and Xg2 equal to F1D0 and F2D0 respectively (see Fig. 1); all other terms have been defined previously.

Model Identifiability Analysis

To test the validity of this model (i.e. to test whether the model parameters can be practically identified), structural identifiability analysis was performed using the similarity transformation approach (32).

Generally, a linear system can be described as:

$$ \frac{{dx}} {{dt}} = A{\left( p \right)}x + B{\left( p \right)}u,x{\left( {t_{0} } \right)} = x_{0} {\left( p \right)} $$
(A10)
$$ y = C{\left( p \right)}x $$
(A11)

where A is the (n × n) system matrix, B is the input matrix, and C is the output matrix, x0 represents the initial condition and p represents the unknown parameter in these matrices.

The similarity transformation approach utilizes the fact that for another model characterized as \( {\left( {\overline{{A,}} \overline{B} ,\overline{C} } \right)} \), it is necessary and sufficient that there exists a nonsingular matrix T such that:

$$ T\overline{B} = B $$
(A12)
$$ \overline{C} = CT $$
(A13)
$$ T\overline{A} = AT $$
(A14)

That is, if solving Eqs. (A12)–(A14) yields the solution that T is the n × n identity matrix, the model is then globally identifiable.

For the model described in Fig. 1, structural identifiability analysis was performed under the condition that both iv and oral doses of quercetin were administered, and the plasma concentrations of unchanged quercetin and its combined glucuronide/sulfate conjugates were measured.

The matrixes of the model are as follows:

$$ A = {\left( {\begin{array}{*{20}c} {{ - {\left( {K_{{a1}} + K_{{a2}} } \right)}}} & {0} & {0} & {0} & {0} \\ {{K_{{a1}} }} & {{ - {\left( {K_{{12}} + K_{f} + K_{{10}} } \right)}}} & {{K_{{21}} }} & {0} & {0} \\ {0} & {{K_{{12}} }} & {{ - K_{{21}} }} & {0} & {0} \\ {{K_{{a2}} }} & {{K_{f} }} & {0} & {{ - {\left( {K_{{34}} + K{}_{{30}}} \right)}}} & {{K_{{43}} }} \\ {0} & {0} & {0} & {{K_{{34}} }} & {{ - K_{{43}} }} \\ \end{array} } \right)} $$
(A15)
$$ B = {\left( {\begin{array}{*{20}c} {1} & {0} \\ {0} & {1} \\ {0} & {0} \\ {0} & {0} \\ {0} & {0} \\ \end{array} } \right)} $$
(A16)
$$ C = {\left( {\begin{array}{*{20}c} {0} & {{\frac{1} {{V_{1} }}}} & {0} & {0} & {0} \\ {0} & {0} & {0} & {0} & {{\frac{1} {{V_{3} }}}} \\ \end{array} } \right)} $$
(A17)

where V1 and V3 are the volumes of compartment 1 and 3, respectively.

Let P be the vector of the unknown parameters, and Tbe a 5 × 5 matrix \( P \in {\left[ {K_{{a1}} ,K_{{a2}} ,V_{1} ,V_{3} ,K_{{12}} ,K_{{21}} ,K_{{10}} ,K_{f} ,K_{{34}} ,K_{{43}} ,K_{{30}} } \right]} \)

$$ T = {\left( {\begin{array}{*{20}c} {{t_{{11}} }} & {{t_{{12}} }} & {{t_{{13}} }} & {{t_{{14}} }} & {{t_{{15}} }} \\ {{t_{{21}} }} & {{t_{{22}} }} & {{t_{{23}} }} & {{t_{{24}} }} & {{t_{{25}} }} \\ {{t_{{31}} }} & {{t_{{32}} }} & {{t_{{33}} }} & {{t_{{34}} }} & {{t_{{35}} }} \\ {{t_{{41}} }} & {{t_{{42}} }} & {{t_{{43}} }} & {{t_{{44}} }} & {{t_{{45}} }} \\ {{t_{{51}} }} & {{t_{{52}} }} & {{t_{{53}} }} & {{t_{{54}} }} & {{t_{{55}} }} \\ \end{array} } \right)} $$
(A18)

By substituting A, B, C, and T into Eqs. (A12)–(A14) gives the following results: 1) V1, Ka1, K12, K21, K34, K43, and K30 are identifiable, whereas Ka2, K f , K1e and V3 are not identifiable; 2) if V3 is known a priori, Ka2, K f , and K1e could be identifiable. Alternatively, if K1e can be assumed to be zero, then the remaining parameters K f , Ka2, and V2 will be identifiable.

Our previous studies in rats showed that the unchanged quercetin in the systemic circulation is primarily metabolized to glucuronide/sulfate conjugates, and only small amount of quercetin (less than 1%) was excreted into the urine and bile. Thus it is reasonable to assume that the excretion pathway of the unchanged quercetin be ignored (i.e., K10 = 0). With this assumption, the proposed model is globally identifiable and all the parameters can be identifiable when both iv and oral doses are administered.

Integrated Solutions for the Plasma Concentrations of Unchanged Quercetin and Glucuronide/Sulfate Conjugates

With an assumption of K10 = 0, solving Eqs.  (A1)–(A4) with initial conditions (at time t = 0, X1(0) = D, X2(0) = X3(0) = X4(0) = 0), the plasma concentration of unchanged quercetin in compartment 1, C1(t), and its glucuronide/sulfate conjugates in compartment 3, C3(t), at any time after an iv administration can be expressed by (Eqs. (A19) and (A20)):

$$ C_{1} {\left( t \right)} = \frac{D} {{V_{1} }} \cdot \left[ {\frac{{k_{{21}} - \alpha _{1} }} {{\beta _{1} - \alpha _{1} }}e^{{ - \alpha _{1} t}} } \right. + \left. {\frac{{K_{{21}} - \beta _{1} }} {{\alpha _{1} - \beta _{1} }}e^{{ - \beta _{1} t}} } \right] $$
(A19)
$$ C_{3} {\left( t \right)} = \frac{{DK_{f} }} {{V_{3} }} \cdot {\left[ {\lambda _{1} e^{{ - \alpha _{1} t}} + \lambda _{2} e^{{ - \beta _{1} t}} + \lambda _{3} e^{{ - \alpha _{2} t}} + \lambda _{4} e^{{ - \beta _{2} t}} } \right]} $$
(A20)
$$ where\;\lambda _{1} = \frac{{{\left( {K_{{21}} - \alpha _{1} } \right)}{\left( {K_{{43}} - \alpha _{1} } \right)}}} {{{\left( {\beta _{1} - \alpha _{1} } \right)}{\left( {\alpha _{2} - \alpha _{1} } \right)}{\left( {\beta _{2} - \alpha _{1} } \right)}}} $$
(A21)

where

$$ \lambda _{2} = \frac{{{\left( {K_{{21}} - \beta _{1} } \right)}{\left( {K_{{43}} - \beta _{1} } \right)}}} {{{\left( {\alpha _{1} - \beta _{1} } \right)}{\left( {\alpha _{2} - \beta _{1} } \right)}{\left( {\beta _{2} - \beta _{1} } \right)}}} $$
(A22)
$$ \lambda _{3} = \frac{{{\left( {K_{{21}} - \alpha _{2} } \right)}{\left( {K_{{43}} - \alpha _{2} } \right)}}} {{{\left( {\alpha _{1} - \alpha _{2} } \right)}{\left( {\beta _{1} - \alpha _{2} } \right)}{\left( {\beta _{2} - \alpha _{2} } \right)}}} $$
(A23)
$$ \lambda _{4} = \frac{{{\left( {K_{{21}} - \beta _{2} } \right)}{\left( {K_{{43}} - \beta _{2} } \right)}}} {{{\left( {\alpha _{1} - \beta _{2} } \right)}{\left( {\beta _{1} - \beta _{2} } \right)}{\left( {\alpha _{2} - \beta _{2} } \right)}}} $$
(A24)
$$ \alpha _{1} + \beta _{1} = K_{f} + K_{{12}} + K_{{21}} $$
(A25)
$$ \alpha _{1} \beta _{1} = K_{f} K_{{21}} $$
(A26)
$$ \alpha _{2} + \beta _{2} = K_{{30}} + K_{{34}} + K_{{43}} $$
(A27)
$$ \alpha _{2} \beta _{2} = K_{{30}} K_{{43}} $$
(A28)

In the above Eqs. (A19)–(A28), D is the dose given intravenously, t is the time after iv administration, α1 and β1 are the first-order hybrid rate constants for the distribution and elimination phases for unchanged quercetin, respectively; whereas α2 and β2 are the first-order hybrid rate constants for the distribution and elimination phases for glucuronide/sulfate conjugates, respectively.

The integrated solutions for plasma concentrations of unchanged quercetin (in compartment 1) and its glucuronide/sulfate conjugates (in compartment 3) after an oral administration are:

$$ C_{1} {\left( t \right)} = \frac{{F_{1} DK_{{a1}} }} {{V_{1} }} \cdot {\left[ {\frac{{k_{{21}} - K_{{a1}} }} {{{\left( {\alpha _{1} - K_{{a1}} } \right)}{\left( {\beta _{1} - K_{{a1}} } \right)}}}e^{{ - K_{{a1}} t}} + \frac{{K_{{21}} - \alpha _{1} }} {{{\left( {K_{{a1}} - \alpha _{1} } \right)}{\left( {\beta _{1} - \alpha _{1} } \right)}}}e^{{ - \alpha _{1} t}} + \frac{{K_{{21}} - \beta _{1} }} {{{\left( {K_{{a1}} - \beta _{1} } \right)}{\left( {\alpha _{1} - \beta _{1} } \right)}}}e^{{ - \beta _{1} t}} } \right]} $$
(A29)
$$ C_{3} {\left( t \right)} = \frac{{F_{1} DK_{{a1}} K_{f} }} {{V_{3} }} \cdot {\left[ {A_{1} e^{{ - K_{{a1}} t}} + A_{2} e^{{ - \alpha _{1} t}} + A_{3} e^{{ - \beta _{1} t}} + A_{4} e^{{ - \alpha _{2} t}} + A_{5} e^{{ - \beta _{2} t}} } \right]} + \frac{{F_{2} DK_{{a2}} }} {{V_{3} }} \cdot {\left[ {B_{1} e^{{ - K_{{a2}} t}} + B_{2} e^{{ - \alpha _{2} t}} + B_{3} e^{{ - \beta _{2} t}} } \right]} $$
(A30)

where

$$ A_{1} = \frac{{{\left( {K_{{21}} - K_{{a1}} } \right)}{\left( {K_{{43}} - K_{{a1}} } \right)}}} {{{\left( {\alpha _{1} - K_{{a1}} } \right)}{\left( {\beta _{1} - K_{{a1}} } \right)}{\left( {\alpha _{2} - K_{{a1}} } \right)}{\left( {\beta _{2} - K_{{a1}} } \right)}}} $$
(A31)
$$ A_{2} = \frac{{{\left( {K_{{21}} - \alpha _{1} } \right)}{\left( {K_{{43}} - \alpha _{1} } \right)}}} {{{\left( {K_{{a1}} - \alpha _{1} } \right)}{\left( {\beta _{1} - \alpha _{1} } \right)}{\left( {\alpha _{2} - \alpha _{1} } \right)}{\left( {\beta _{2} - \alpha _{1} } \right)}}} $$
(A32)
$$ A_{3} = \frac{{{\left( {K_{{21}} - \beta _{1} } \right)}{\left( {K_{{43}} - \beta _{1} } \right)}}} {{{\left( {K_{{a1}} - \beta _{1} } \right)}{\left( {\alpha _{1} - \beta _{1} } \right)}{\left( {\alpha _{1} - \beta _{1} } \right)}{\left( {\beta _{2} - \beta _{1} } \right)}}} $$
(A33)
$$ A_{4} = \frac{{{\left( {K_{{21}} - \alpha _{2} } \right)}{\left( {K_{{43}} - \alpha _{2} } \right)}}} {{{\left( {K_{{a1}} - \alpha _{2} } \right)}{\left( {\alpha _{1} - \alpha _{2} } \right)}{\left( {\beta _{1} - \alpha _{2} } \right)}{\left( {\beta _{2} - \alpha _{2} } \right)}}} $$
(A34)
$$ A_{5} = \frac{{{\left( {K_{{21}} - \beta _{2} } \right)}{\left( {K_{{43}} - \beta _{2} } \right)}}} {{{\left( {K_{{a1}} - \beta _{2} } \right)}{\left( {\alpha _{1} - \beta _{2} } \right)}{\left( {\beta _{1} - \beta _{2} } \right)}{\left( {\alpha _{2} - \beta _{2} } \right)}}} $$
(A35)
$$ B_{1} = \frac{{K_{{43}} - K_{{a2}} }} {{{\left( {\alpha _{2} - K_{{a2}} } \right)}{\left( {\beta _{2} - K_{{a2}} } \right)}}} $$
(A36)
$$ B_{2} = \frac{{K_{{43}} - \alpha _{2} }} {{{\left( {K_{{a2}} - \alpha _{2} } \right)}{\left( {\beta _{2} - \alpha _{2} } \right)}}} $$
(A37)
$$ B_{3} = \frac{{K_{{43}} - \beta _{2} }} {{{\left( {K_{{a2}} - \beta _{2} } \right)}{\left( {\alpha _{2} - \beta _{2} } \right)}}} $$
(A38)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Yin, O.Q.P., Zuo, Z. et al. Pharmacokinetics and Modeling of Quercetin and Metabolites. Pharm Res 22, 892–901 (2005). https://doi.org/10.1007/s11095-005-4584-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-005-4584-1

Key words

Navigation