Skip to main content
Log in

The Role of the δ GABA(A) Receptor in Ovarian Cycle-Linked Changes in Hippocampus-Dependent Learning and Memory

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The δ subunit of the GABAAR is highly expressed in the dentate gyrus of the hippocampus where it mediates a tonic extrasynaptic inhibitory current that is sensitive to neurosteroids. In female mice, the expression level of the δ subunit within the dentate gyrus is elevated in the diestrous relative to estrous phase of the estrous cycle. Previous work in our lab found that female δ-GABAAR KO mice showed enhanced hippocampus-dependent trace but normal hippocampus-independent delay fear conditioning. Wild-type females in this study showed a wide range of freezing levels, whereas δ-GABAAR KO mice expressed only high levels of fear. We hypothesized that the variability in the wild-type mice may have been due to estrous cycle-mediated changes in the expression of the δ-GABAAR, with low levels of freezing in mice that were in the diestrous phase when dentate gyrus tonic inhibition is high. In the present study we tested this hypothesis by utilizing contextual, delay, and trace fear conditioning protocols in mice that were trained and tested in either the diestrous or estrous phases. Consistent with our hypothesis, we found a significant impairment of hippocampus-dependent learning and memory during diestrus relative to estrus in wild-type mice and this impairment was absent in δ-GABAAR mice. These findings argue that the δ-GABAAR plays an important role in estrous cycle-mediated fluctuations in hippocampus-dependent learning and memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Milad MR, Goldstein JM, Orr SP, Wedig MM, Klibanski A, Pitman RK, Rauch SL (2006) Fear conditioning and extinction: influence of sex and menstrual cycle in healthy humans. Behav Neurosci 120:1196–1203

    Article  CAS  PubMed  Google Scholar 

  2. Phillips SM, Sherwin BB (1992) Variations in memory function and sex steroid hormones across the menstrual cycle. Psychoneuroendocrinology 17:497–506

    Article  CAS  PubMed  Google Scholar 

  3. Case AM, Reid RL (1998) Effects of the menstrual cycle on medical disorders. Arch Intern Med 158:1405–1412

    Article  CAS  PubMed  Google Scholar 

  4. Anthony M, Berg MJ (2002) Biologic and molecular mechanisms for sex differences in pharmacokinetics, pharmacodynamics, and pharmacogenetics: part II. J Women Health Gender Based Med 11:617–629

    Article  Google Scholar 

  5. Smith SS, Shen H, Gong QH, Zhou X (2007) Neurosteroid regulation of GABA(A) receptors: focus on the alpha4 and delta subunits. Pharmacol Ther 116:58–76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Goldstein JM, Jerram M, Poldrack R, Ahern T, Kennedy DN, Seidman LJ, Makris N (2005) Hormonal cycle modulates arousal circuitry in women using functional magnetic resonance imaging. J Neurosci 25:9309–9316

    Article  CAS  PubMed  Google Scholar 

  7. Swerdlow NR, Hartman PL, Auerbach PP (1997) Changes in sensorimotor inhibition across the menstrual cycle: implications for neuropsychiatric disorders. Biol Psychiatry 41:452–460

    Article  CAS  PubMed  Google Scholar 

  8. Newmark ME, Penry JK (1980) Catamenial epilepsy: a review. Epilepsia 21:281–300

    Article  CAS  PubMed  Google Scholar 

  9. Lundberg PO (1997) Catamenial epilepsy: a review. Cephalalgia 17(Suppl 20):42–45

    PubMed  Google Scholar 

  10. Lambert MV (2001) Seizures, hormones and sexuality. Seizure 10:319–340

    Article  CAS  PubMed  Google Scholar 

  11. Woolley CS, Gould E, Frankfurt M, McEwen BS (1990) Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. J Neurosci 10:4035–4039

    CAS  PubMed  Google Scholar 

  12. Becker JB, Molenda H, Hummer DL (2001) Gender differences in the behavioral responses to cocaine and amphetamine. Implications for mechanisms mediating gender differences in drug abuse. Ann NY Acad Sci 937:172–187

    Article  CAS  PubMed  Google Scholar 

  13. Cahill L (2010) Sex influences on brain and emotional memory: the burden of proof has shifted. Prog Brain Res 186:29–40

    Article  PubMed  Google Scholar 

  14. Cahill L (2012) A half-truth is a whole lie: on the necessity of investigating sex influences on the brain. Endocrinology 153:2541–2543

    Article  PubMed Central  PubMed  Google Scholar 

  15. Zucker I, Beery AK (2010) Males still dominate animal studies. Nature 465:690

    Article  CAS  PubMed  Google Scholar 

  16. Lambert JJ, Belelli D, Peden DR, Vardy AW, Peters JA (2003) Neurosteroid modulation of GABAA receptors. Prog Neurobiol 71:67–80

    Article  CAS  PubMed  Google Scholar 

  17. Stell BM, Brickley SG, Tang CY, Farrant M, Mody I (2003) Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABAA receptors. Proc Natl Acad Sci USA 100:14439–14444

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Herd MB, Belelli D, Lambert JJ (2007) Neurosteroid modulation of synaptic and extrasynaptic GABA(A) receptors. Pharmacol Ther 116:20–34

    Article  CAS  PubMed  Google Scholar 

  19. Wisden W, Laurie DJ, Monyer H, Seeburg PH (1992) The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J Neurosci 12:1040–1062

    CAS  PubMed  Google Scholar 

  20. Johansson IM, Birzniece V, Lindblad C, Olsson T, Backstrom T (2002) Allopregnanolone inhibits learning in the Morris water maze. Brain Res 934:125–131

    Article  CAS  PubMed  Google Scholar 

  21. Cushman JD, Moore MD, Jacobs NS, Olsen RW, Fanselow MS (2011) Behavioral pharmacogenetic analysis on the role of the alpha4 GABA(A) receptor subunit in the ethanol-mediated impairment of hippocampus-dependent contextual learning. Alcohol Clin Exp Res 35:1948–1959

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ladurelle N, Eychenne B, Denton D, Blair-West J, Schumacher M, Robel P, Baulieu E (2000) Prolonged intracerebroventricular infusion of neurosteroids affects cognitive performances in the mouse. Brain Res 858:371–379

    Article  CAS  PubMed  Google Scholar 

  23. Matthews DB, Morrow AL, Tokunaga S, McDaniel JR (2002) Acute ethanol administration and acute allopregnanolone administration impair spatial memory in the Morris water task. Alcohol Clin Exp Res 26:1747–1751

    Article  CAS  PubMed  Google Scholar 

  24. Brot MD, Akwa Y, Purdy RH, Koob GF, Britton KT (1997) The anxiolytic-like effects of the neurosteroid allopregnanolone: interactions with GABA(A) receptors. Eur J Pharmacol 325:1–7

    Article  CAS  PubMed  Google Scholar 

  25. Akwa Y, Purdy RH, Koob GF, Britton KT (1999) The amygdala mediates the anxiolytic-like effect of the neurosteroid allopregnanolone in rat. Behav Brain Res 106:119–125

    Article  CAS  PubMed  Google Scholar 

  26. Barbaccia ML (2004) Neurosteroidogenesis: relevance to neurosteroid actions in brain and modulation by psychotropic drugs. Crit Rev Neurobiol 16:67–74

    Article  CAS  PubMed  Google Scholar 

  27. Reddy DS, Apanites LA (2005) Anesthetic effects of progesterone are undiminished in progesterone receptor knockout mice. Brain Res 1033:96–101

    Article  CAS  PubMed  Google Scholar 

  28. Finn DA, Gee KW (1993) The influence of estrus cycle on neurosteroid potency at the gamma-aminobutyric acid: a receptor complex. J Pharmacol Exp Ther 265:1374–1379

    CAS  PubMed  Google Scholar 

  29. Maguire JL, Stell BM, Rafizadeh M, Mody I (2005) Ovarian cycle-linked changes in GABA(A) receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat Neurosci 8:797–804

    Article  CAS  PubMed  Google Scholar 

  30. Wu X, Gangisetty O, Carver CM, Reddy DS (2013) Estrous cycle regulation of extrasynaptic delta-containing GABA(A) receptor-mediated tonic inhibition and limbic epileptogenesis. J Pharmacol Exp Ther 346:146–160

    Article  CAS  PubMed  Google Scholar 

  31. Lovick TA, Griffiths JL, Dunn SM, Martin IL (2005) Changes in GABA(A) receptor subunit expression in the midbrain during the oestrous cycle in Wistar rats. Neuroscience 131:397–405

    Article  CAS  PubMed  Google Scholar 

  32. Maguire J, Mody I (2007) Neurosteroid synthesis-mediated regulation of GABA(A) receptors: relevance to the ovarian cycle and stress. J Neurosci 27:2155–2162

    Article  CAS  PubMed  Google Scholar 

  33. Kuver A, Shen H, Smith SS (2012) Regulation of the surface expression of α4β2δ GABAA receptors by high efficacy states. Brain Res 1463:1–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Moore MD, Cushman J, Chandra D, Homanics GE, Olsen RW, Fanselow MS (2010) Trace and contextual fear conditioning is enhanced in mice lacking the α4 subunit of the GABA(A) receptor. Neurobiol Learn Mem 93:383–387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Wiltgen BJ, Sanders MJ, Ferguson C, Homanics GE, Fanselow MS (2005) Trace fear conditioning is enhanced in mice lacking the delta subunit of the GABAA receptor. Learn Mem (Cold Spring Harbor NY) 12:327–333

  36. Jacobs NS, Cushman JD, Fanselow MS (2010) The accurate measurement of fear memory in Pavlovian conditioning: resolving the baseline issue. J Neurosci Method 190:235–239

    Article  Google Scholar 

  37. Godsil BP, Stefanacci L, Fanselow MS (2005) Bright light suppresses hyperactivity induced by excitotoxic dorsal hippocampus lesions in the rat. Behav Neurosci 119:1339–1352

    Article  PubMed  Google Scholar 

  38. Quinn JJ, Loya F, Ma QD, Fanselow MS (2005) Dorsal hippocampus NMDA receptors differentially mediate trace and contextual fear conditioning. Hippocampus 15:665–674

    Article  CAS  PubMed  Google Scholar 

  39. Markus EJ, Zecevic M (1997) Sex differences and estrous cycle changes in hippocampus-dependent fear conditioning. Psychobiology 25:246–252

    Google Scholar 

  40. van Goethem NP, Rutten K, van der Staay FJ, Jans LA, Akkerman S, Steinbusch HW, Blokland A, van Klooster J, Prickaerts J (2012) Object recognition testing: rodent species, strains, housing conditions, and estrous cycle. Behav Brain Res 232:323–334

    Article  PubMed  Google Scholar 

  41. Walf AA, Rhodes ME, Frye CA (2006) Ovarian steroids enhance object recognition in naturally cycling and ovariectomized, hormone-primed rats. Neurobiol Learn Mem 86:35–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Diaz-Veliz G, Butron S, Benavides MS, Dussaubat N, Mora S (2000) Gender, estrous cycle, ovariectomy, and ovarian hormones influence the effects of diazepam on avoidance conditioning in rats. Pharmacol Biochem Behav 66:887–892

    Article  CAS  PubMed  Google Scholar 

  43. Diaz-Veliz G, Soto V, Dussaubat N, Mora S (1989) Influence of the estrous cycle, ovariectomy and estradiol replacement upon the acquisition of conditioned avoidance responses in rats. Physiol Behav 46:397–401

    Article  CAS  PubMed  Google Scholar 

  44. Farr SA, Flood JF, Scherrer JF, Kaiser FE, Taylor GT, Morley JE (1995) Effect of ovarian steroids on footshock avoidance learning and retention in female mice. Physiol Behav 58:715–723

    Article  CAS  PubMed  Google Scholar 

  45. Gray P (1977) Effect of the estrous cycle on conditioned avoidance in mice. Horm Behav 8:235–241

    Article  CAS  PubMed  Google Scholar 

  46. Bolles RC (1970) Species-specific defense reactions and avoidance learning. Psychol Rev 77:32–48

    Article  Google Scholar 

  47. Blanchard RJ, Blanchard DC, Fial RA (1970) Hippocampal lesions in rats and their effect on activity, avoidance, and aggression. J Comp Physiol Psychol 71:92–101

    Article  CAS  PubMed  Google Scholar 

  48. Brack KE, Lovick TA (2007) Neuronal excitability in the periaqueductal grey matter during the estrous cycle in female Wistar rats. Neuroscience 144:325–335

    Article  CAS  PubMed  Google Scholar 

  49. Lovick TA (2006) Plasticity of GABAA receptor subunit expression during the oestrous cycle of the rat: implications for premenstrual syndrome in women. Exp Physiol 91:655–660

    Article  CAS  PubMed  Google Scholar 

  50. Jazin E, Cahill L (2010) Sex differences in molecular neuroscience: from fruit flies to humans. Nat Rev Neurosci 11:9–17

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the following funding sources for their financial support: NIH Grants: MH62122, AA07680 and NS35985; Training Grants: 5T32MH019384-14. We would also like to thank Sarah Madsen for her expert technical assistance and Jamie Maguire for training in estrous cycle monitoring.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse D. Cushman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cushman, J.D., Moore, M.D., Olsen, R.W. et al. The Role of the δ GABA(A) Receptor in Ovarian Cycle-Linked Changes in Hippocampus-Dependent Learning and Memory. Neurochem Res 39, 1140–1146 (2014). https://doi.org/10.1007/s11064-014-1282-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1282-6

Keywords

Navigation