Skip to main content
Log in

Motor Function in MPTP-Treated Tree Shrews (Tupaia belangeri chinensis)

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The tree shrew, a new experimental animal model, has been used to study a variety of diseases, especially diseases of the nervous system. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is the gold standard for toxin-based animal models of Parkinson’s disease (PD) because MPTP treatment replicates almost all of the pathological hallmarks of PD. Therefore, in this study, the effects of MPTP on the motor function of the tree shrew were examined. After five daily injections of a 3 mg/kg dose of MPTP, the motor function of MPTP-injected tree shrews decreased significantly, and the classic Parkinsonian symptoms of action and resting tremor, bradykinesia, posture abnormalities, and gait instability were observed in most MPTP-injected tree shrews. HPLC results also showed significantly reduced striatal dopamine and 3,4-dihydroxyphenylacetic acid levels in tree shrews after MPTP injection. Increased oxidative stress levels are usually considered to be the cause of dopaminergic neuron depletion in the presence of MPTP and were observed in the substantia nigra of MPTP-treated tree shrews, as indicated by a significant reduction in superoxide dismutase and glutathione peroxidase activity and increased levels of malondialdehyde. In addition, elevated α-synuclein mRNA levels in the midbrain of MPTP-treated tree shrews were observed. Furthermore, MPTP-treated tree shrews showed the classic Parkinsonian symptoms at a lower MPTP dosage compared with other animal models. Thus, the MPTP-treated tree shrew may be a potential animal model for studying the pathogenesis of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Olanow CW, Obeso JA, Stocchi F (2006) Continuous dopamine-receptor treatment of Parkinson’s disease: scientific rationale and clinical implications. Lancet Neurol 5:677–687

    Article  PubMed  CAS  Google Scholar 

  2. Geng X, Tian X, Tu P, Pu X (2007) Neuroprotective effects of echinacoside in the mouse MPTP model of Parkinson’s disease. Eur J Pharmacol 564:66–74

    Article  PubMed  CAS  Google Scholar 

  3. Heikkila RE, Hess A, Duvoisin RC (1984) Dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine in mice. Science 224:1451–1453

    Article  PubMed  CAS  Google Scholar 

  4. Blesa J, Phani S, Jackson-Lewis V, Przedborski S (2012) Classic and new animal models of Parkinson’s disease. J Biomed Biotechnol 2012:845618

    Article  PubMed  Google Scholar 

  5. Bartolomucci A, de Biurrun G, Fuchs E (2001) How tree shrews (Tupaia belangeri) perform in a searching task: evidence for strategy use. J Comp Psychol 115:344–350

    Article  PubMed  CAS  Google Scholar 

  6. Czeh B, Michaelis T, Watanabe T, Frahm J, de Biurrun G, van Kampen M, Bartolomucci A, Fuchs E (2001) Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci USA 98:12796–12801

    Article  PubMed  CAS  Google Scholar 

  7. Fuchs E (2005) Social stress in tree shrews as an animal model of depression: an example of a behavioral model of a CNS disorder. CNS Spectr 10:182–190

    PubMed  Google Scholar 

  8. Fuchs E, Flugge G (2002) Social stress in tree shrews: effects on physiology, brain function, and behavior of subordinate individuals. Pharmacol Biochem Behav 73:247–258

    Article  PubMed  CAS  Google Scholar 

  9. Fuchs E, Uno H, Flugge G (1995) Chronic psychosocial stress induces morphological alterations in hippocampal pyramidal neurons of the tree shrew. Brain Res 673:275–282

    Article  PubMed  CAS  Google Scholar 

  10. Gould E, McEwen BS, Tanapat P, Galea LA, Fuchs E (1997) Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci 17:2492–2498

    PubMed  CAS  Google Scholar 

  11. McCoy P, Norton TT, McMahon LL (2008) Layer 2/3 synapses in monocular and binocular regions of tree shrew visual cortex express mAChR-dependent long-term depression and long-term potentiation. J Neurophysiol 100:336–345

    Article  PubMed  CAS  Google Scholar 

  12. Vezoli J, Fifel K, Leviel V, Dehay C, Kennedy H, Cooper HM, Gronfier C, Procyk E (2011) Early presymptomatic and long-term changes of rest activity cycles and cognitive behavior in a MPTP-monkey model of Parkinson’s disease. PLoS One 6:e23952

    Article  PubMed  CAS  Google Scholar 

  13. Chiba-Falek O, Lopez GJ, Nussbaum RL (2006) Levels of alpha-synuclein mRNA in sporadic Parkinson disease patients. Mov Disord 21:1703–1708

    Article  PubMed  Google Scholar 

  14. Lo YC, Shih YT, Tseng YT, Hsu HT (2012) Neuroprotective effects of San-Huang-Xie-Xin-Tang in the MPP(+)/MPTP Models of Parkinson’s disease in vitro and in vivo. Evid Based Complement Alternat Med 2012:501032

    PubMed  Google Scholar 

  15. Li XZ, Chen XP, Zhao K, Bai LM, Zhang H, Zhou X (2012) Therapeutic effects of valproate combined with lithium carbonate on MPTP-induced Parkinsonism in mice: possible mediation through enhanced autophagy. Int J Neurosci (PubMed: 22978383)

  16. Wu DD, Huang L, Zhang L, Wu LY, Li YC, Feng L (2012) LLDT-67 attenuates MPTP-induced neurotoxicity in mice by up-regulating NGF expression. Acta Pharmacol Sin 33:1187–1194

    Article  PubMed  CAS  Google Scholar 

  17. Villalba RM, Smith Y (2011) Differential structural plasticity of corticostriatal and thalamostriatal axo-spinous synapses in MPTP-treated Parkinsonian monkeys. J Comp Neurol 519:989–1005

    Article  PubMed  CAS  Google Scholar 

  18. Javitch JA, Snyder SH (1984) Uptake of MPP(+) by dopamine neurons explains selectivity of parkinsonism-inducing neurotoxin, MPTP. Eur J Pharmacol 106:455–456

    Article  PubMed  CAS  Google Scholar 

  19. Nicklas WJ, Vyas I, Heikkila RE (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci 36:2503–2508

    Article  PubMed  CAS  Google Scholar 

  20. Rozas G, Lopez-Martin E, Guerra MJ, Labandeira-Garcia JL (1998) The overall rod performance test in the MPTP-treated-mouse model of Parkinsonism. J Neurosci Methods 83:165–175

    Article  PubMed  CAS  Google Scholar 

  21. Haobam R, Sindhu KM, Chandra G, Mohanakumar KP (2005) Swim-test as a function of motor impairment in MPTP model of Parkinson’s disease: a comparative study in two mouse strains. Behav Brain Res 163:159–167

    Article  PubMed  CAS  Google Scholar 

  22. Liebetanz D, Baier PC, Paulus W, Meuer K, Bahr M, Weishaupt JH (2007) A highly sensitive automated complex running wheel test to detect latent motor deficits in the mouse MPTP model of Parkinson’s disease. Exp Neurol 205:207–213

    Article  PubMed  CAS  Google Scholar 

  23. Bezard E, Imbert C, Deloire X, Bioulac B, Gross CE (1997) A chronic MPTP model reproducing the slow evolution of Parkinson’s disease: evolution of motor symptoms in the monkey. Brain Res 766:107–112

    Article  PubMed  CAS  Google Scholar 

  24. Politis M, Wu K, Molloy S, Bain PG, Chaudhuri KR, Piccini P (2010) Parkinson’s disease symptoms: the patient’s perspective. Mov Disord 25:1646–1651

    Article  PubMed  Google Scholar 

  25. Sowell RA, Owen JB, Butterfield DA (2009) Proteomics in animal models of Alzheimer’s and Parkinson’s diseases. Ageing Res Rev 8:1–17

    Article  PubMed  CAS  Google Scholar 

  26. Madras BK (1994) 11C-WIN 35,428 for detecting dopamine depletion in mild Parkinson’s disease. Ann Neurol 35:376–377

    Article  PubMed  CAS  Google Scholar 

  27. Bloem BR, Irwin I, Buruma OJ, Haan J, Roos RA, Tetrud JW, Langston JW (1990) The MPTP model: versatile contributions to the treatment of idiopathic Parkinson’s disease. J Neurol Sci 97:273–293

    Article  PubMed  CAS  Google Scholar 

  28. Ferraro TN, Golden GT, DeMattei M, Hare TA, Fariello RG (1986) Effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on levels of glutathione in the extrapyramidal system of the mouse. Neuropharmacology 25:1071–1074

    Article  PubMed  CAS  Google Scholar 

  29. Simonian NA, Coyle JT (1996) Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36:83–106

    Article  PubMed  CAS  Google Scholar 

  30. Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47:S161–S170

    Article  PubMed  CAS  Google Scholar 

  31. Graham DG (1979) On the origin and significance of neuromelanin. Arch Pathol Lab Med 103:359–362

    PubMed  CAS  Google Scholar 

  32. Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu K, Xu K, Strathearn KE, Liu F, Cao S, Caldwell KA, Caldwell GA, Marsischky G, Kolodner RD, Labaer J, Rochet JC, Bonini NM, Lindquist S (2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313:324–328

    Article  PubMed  CAS  Google Scholar 

  33. Mori F, Nishie M, Kakita A, Yoshimoto M, Takahashi H, Wakabayashi K (2006) Relationship among alpha-synuclein accumulation, dopamine synthesis, and neurodegeneration in Parkinson disease substantia nigra. J Neuropathol Exp Neurol 65:808–815

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20121106120056), Yunnan Natural Science Foundation (No. 2013FZ132; No. 2011FB116), National Natural Science Foundation (No. 31100127) and the National Science and Technology Support Project (No. 2009BAI83B02-21; No. 2011BAI15B01-21; No. 2012BAI39B01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai-Li Ma or Jie-Jie Dai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 32617 kb)

Supplementary material 2 (MP4 6310 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, KL., Gao, JH., Huang, ZQ. et al. Motor Function in MPTP-Treated Tree Shrews (Tupaia belangeri chinensis). Neurochem Res 38, 1935–1940 (2013). https://doi.org/10.1007/s11064-013-1099-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1099-8

Keywords

Navigation