Skip to main content

Advertisement

Log in

miR-9*- and miR-124a-Mediated Switching of Chromatin Remodelling Complexes is Altered in Rat Spina Bifida Aperta

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neural tube defects (NTDs) are complex congenital malformations resulting from incomplete neurulation. Our previous work has demonstrated that motor and sensory neurons develop defectively in rat embryos with spina bifida aperta. To identify whether neural development-associated miRNAs play a role in the neurological deficits of NTDs, we screened a panel of neural development-related miRNAs, including miR-9, miR-9*, miR-124a, miR-10a, miR10b, miR-34a, miR-221 and miR-222, in the spinal cords of rats with retinoic acid–induced spina bifida aperta. We discovered that the expression of miR-9, miR-9* and miR-124a was specifically down-regulated compared to spinal cords without spina bifida. To further clarify whether down-regulation of miR-9* and miR-124a contributes to the neurological deficits of NTDs, we investigated the levels of genes involved in switching in the subunit composition of Swi/Snf-like BAF (Brg/Brm associated factor) complexes modulated by miR-9* and miR-124a and neuronal differentiation. In addition to the down-regulation of miR-9* and miR-124a expression, we also observed increased expression of repressor element silencing transcription factor (REST) and BAF53a and decreased expression of BAF53b, Brg1 and NeuroD1. Our results suggest that REST-regulated miR-9*- and the miR-124a-mediated chromatin remodelling regulatory mechanism may participate in the neuronal deficits of spina bifida.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhu L, Ling H (2008) National neural tube defects prevention program in China. Food Nutr Bull 29(2 Suppl):S196–S204

    PubMed  Google Scholar 

  2. Guan KP, Li H, Fan Y, Wang WL, Yuan ZW (2009) Defective development of sensory neurons innervating the levator ani muscle in fetal rats with anorectal malformation. Birth Defects Rese A Clin Mol Teratol 85(7):583–587

    Article  CAS  Google Scholar 

  3. Yuan ZW, Lui VC, Tam PK (2003) Deficient motor innervation of the sphincter mechanism in fetal rats with anorectal malformation: a quantitative study by fluorogold retrograde tracing. J Pediatr Surg 38(9):1383–1388

    Article  PubMed  CAS  Google Scholar 

  4. Copp AJ, Greene NDE (2010) Genetics and development of neural tube defects. J Pathol 220(2):217–230

    PubMed  CAS  Google Scholar 

  5. Copp AJ, Greene NDE, Murdoch JN (2003) The genetic basis of mammalian neurulation. Nat Rev Genetics 4(10):784–793

    Article  Google Scholar 

  6. Copp AJ (2005) Neurulation in the cranial region normal and abnormal. J Anat 207:623–635

    Article  PubMed  Google Scholar 

  7. Harris MJ, Juriloff DM (2010) An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure. Birth Defects Res A Clin Mol Teratol 88(8):653–669

    Article  PubMed  CAS  Google Scholar 

  8. Miska EA, Alvarez-Saavedra E, Townsend M, Yoshii A, Šestan N, Rakic P, Constantine-Paton M, Horvitz HR (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5:R68

    Article  PubMed  Google Scholar 

  9. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5:R13

    Article  PubMed  Google Scholar 

  10. Krichevsky AM, Sonntag K-C, Isacson O, Kosikc KS (2006) Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24(4):857–864

    Article  PubMed  CAS  Google Scholar 

  11. Giraldez AJ, Cinalli RM, Glasner ME, Enright AJ, Thomson JM et al (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308(5723):833–838

    Article  PubMed  CAS  Google Scholar 

  12. Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305(5689):1437–1441

    Article  PubMed  CAS  Google Scholar 

  13. Cao XW, Pfaff SL, Gage FH (2007) A functional study of miR-124 in the developing neural tube. Genes Dev 21:531–536

    Article  PubMed  CAS  Google Scholar 

  14. Decembrini SD, Bressan D, Vignali R, Pitto L, Mariotti S et al (2009) MicroRNAs couple cell fate and developmental timing in retina. Proc Natl Acad Sci USA 106(50):21179–21184

    Article  PubMed  CAS  Google Scholar 

  15. Foley NH, Bray I, Watters KM, Das S, Bryan K et al (2011) MicroRNAs 10a and 10b are potent inducers of neuroblastoma cell differentiation through targeting of nuclear receptor corepressor 2. Cell Death Differ 18(7):1089–1098

    Article  PubMed  CAS  Google Scholar 

  16. Zhou RL, Yuan PX, Wang Y, Hunsberger JG, Elkahloun A et al (2008) Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacology 34(6):1395–1405

    Article  PubMed  Google Scholar 

  17. Zhang ZP, Chang HB, Li YY, Zhang TZ, Zou JZ et al (2010) MicroRNAs: potential regulators involved in human anencephaly. Int J Biochem Cell Biol 42(2):367–374

    Article  PubMed  CAS  Google Scholar 

  18. Gao F-B (2010) Context-dependent functions of specific microRNAs in neuronal development. Neural Dev 5(1):25

    Article  PubMed  Google Scholar 

  19. Vo NK, Cambronne XA, Goodman RH (2010) MicroRNA pathways in neural development and plasticity. Curr Opin Neurobiol 20(4):457–465

    Article  PubMed  CAS  Google Scholar 

  20. Yoo AS, Staahl BT, Chen L, Crabtree GR (2009) MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 460(7255):642–646

    PubMed  CAS  Google Scholar 

  21. Lessard J, Wu JI, Ranish JA, Wan M, Winslow MM et al (2007) An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55(2):201–215

    Article  PubMed  CAS  Google Scholar 

  22. Lee JE (1997) Basic helix-loop-helix genes in neural development. Curr Opin Neurobiol 7:13–20

    Article  PubMed  Google Scholar 

  23. Lee JK, Cho JH, Hwang WS, Lee YD, Reu DS et al (2000) Expression of neuroD/BETA2 in mitotic and post-mitotic neuronal cells during the development of nervous system. Dev Dyn 217(4):361–367

    Article  PubMed  CAS  Google Scholar 

  24. Li H, Gao F, Ma LL, Jiang MY, Miao JN, Jiang JH et al (2012) Therapeutic potential of in utero mesenchymal stem cell (MSCs) transplantation in rat foetuses with spina bifida aperta. J Cell Mol Med 16(7):1606–1617

    Article  PubMed  CAS  Google Scholar 

  25. Wei XW, Li H, Miao JN, Zhou FH, Liu B et al (2012) Disturbed apoptosis and cell proliferation in developing neuroepithelium of lumbo-sacral neural tubes in retinoic acid-induced spina bifida aperta in rat. Int J Dev Neurosci 30(5):375–381

    Article  PubMed  CAS  Google Scholar 

  26. Bultman S, Gebuhr T, Yee D, Mantia CL, Nicholson J et al (2000) A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol Cell 6:1287–1295

    Article  PubMed  CAS  Google Scholar 

  27. Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS (2003) A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9(10):1274–1281

    Article  PubMed  CAS  Google Scholar 

  28. Zhao JJ, Sun DG, Wang J, Liu SR, Zhang CY et al (2008) Retinoic acid downregulates microRNAs to induce abnormal development of spinal cord in spina bifida rat model. Childs Nerv Syst 24:485–492

    Article  PubMed  Google Scholar 

  29. Conaco C (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. PNAS 103(7):2422–2427

    Article  PubMed  CAS  Google Scholar 

  30. Kapsimali M, Kloosterman WP, de Bruijn E, Rosa F, Plasterk RH et al (2007) MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol 8(8):R173

    Article  PubMed  Google Scholar 

  31. Seo S (2004) The SWI/SNF chromatin remodeling protein Brg1 is required for vertebrate neurogenesis and mediates transactivation of Ngn and NeuroD. Development 132(1):105–115

    Article  PubMed  Google Scholar 

  32. Wu JI, Lessard J, Olave IA, Qiu ZL, Ghosh A et al (2007) Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron 56(1):94–108

    Article  PubMed  CAS  Google Scholar 

  33. Otto SJ, McCorkle SR, Hover J, Conaco C, Han J–J et al (2007) A new binding motif for the transcriptional repressor REST uncovers large gene networks devoted to neuronal functions. J Neurosci 27(25):6729–6739

    Article  PubMed  CAS  Google Scholar 

  34. Aboobaker AA, Tomancak P, Patel N, Rubin GM, Lai EC (2005) Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. PNAS 102:18017–18022

    Article  PubMed  CAS  Google Scholar 

  35. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W et al (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739

    Article  PubMed  CAS  Google Scholar 

  36. Wienholds E, Kloosterman WP, Miska E, Alvarez-Saavedra E, Berezikov E et al (2005) MicroRNA expression in zebrafish embryonic development. Science 309:310–311

    Article  PubMed  CAS  Google Scholar 

  37. Visvanathan J, Lee S, Lee B, Lee JW, Lee SK (2007) The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev 21(7):744–749

    Article  PubMed  CAS  Google Scholar 

  38. Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The microRNA miR- 124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435–448

    Article  PubMed  CAS  Google Scholar 

  39. Cheng LC, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12:399–408

    Article  PubMed  CAS  Google Scholar 

  40. Sun K, Westholm JO, Tsurudome K, Hagen JW, Lu Y et al (2012) Neurophysiological defects and neuronal gene deregulation in drosophila mir-124 mutants. PLoS Genet 8(2):e1002515

    Article  PubMed  CAS  Google Scholar 

  41. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  PubMed  CAS  Google Scholar 

  42. Yuva-Aydemir Y, Simkin A, Gascon E, Gao FB (2011) MicroRNA-9: functional evolution of a conserved small regulatory RNA. RNA Biol 8(4):557–564

    Article  PubMed  CAS  Google Scholar 

  43. Shibata M, Nakao H, Kiyonari H, Abe T, Aizawa S (2011) MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple transcription factors. J Neurosci 31(9):3407–3422

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Foundation of China (Grant nos. 81270755, 81171072, and 81070538), the National Basic Research Program of china (973 program, no. 213CB945400) and the Research Fund for the Doctoral Program of Higher Education of China (no. 20092104120010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Li or Zhengwei Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, X., Li, H., Miao, J. et al. miR-9*- and miR-124a-Mediated Switching of Chromatin Remodelling Complexes is Altered in Rat Spina Bifida Aperta. Neurochem Res 38, 1605–1615 (2013). https://doi.org/10.1007/s11064-013-1062-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1062-8

Keywords

Navigation