Skip to main content

Advertisement

Log in

Effects of Ethanol Exposure During Early Pregnancy in Hyperactive, Inattentive and Impulsive Behaviors and MeCP2 Expression in Rodent Offspring

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Prenatal exposure to alcohol has consistently been associated with adverse effects on neurodevelopment, which is collectively called fetal alcohol spectrum disorder (FASD). Increasing evidence suggest that prenatal exposure to alcohol increases the risk of developing attention deficit/hyperactivity disorder-like behavior in human. In this study, we investigated the behavioral effects of prenatal exposure to EtOH in offspring mice and rats focusing on hyperactivity and impulsivity. We also examined changes in dopamine transporter and MeCP2 expression, which may underlie as a key neurobiological and epigenetic determinant in FASD and hyperactive, inattentive and impulsive behaviors. Mouse or rat offspring born from dam exposed to alcohol during pregnancy (EtOH group) showed hyper locomotive activity, attention deficit and impulsivity. EtOH group also showed increased dopamine transporter and norepinephrine transporter level compared to control group in the prefrontal cortex and striatum. Prenatal exposure to EtOH also significantly decreased the expression of MeCP2 in both prefrontal cortex and striatum. These results suggest that prenatal exposure to EtOH induces hyperactive, inattentive and impulsive behaviors in rodent offspring that might be related to global epigenetic changes as well as aberration in catecholamine neurotransmitter transporter system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mullally A, Cleary BJ, Barry J, Fahey TP, Murphy DJ (2011) Prevalence, predictors and perinatal outcomes of peri-conceptional alcohol exposure–retrospective cohort study in an urban obstetric population in Ireland. BMC Pregnancy Childbirth 11:27. doi:10.1186/1471-2393-11-27

    Article  PubMed  Google Scholar 

  2. Driscoll PG, Joseph F Jr, Nakamoto T (1990) Prenatal effects of maternal caffeine intake and dietary high protein on mandibular development in fetal rats. Br J Nutr 63(2):285–292

    Article  PubMed  CAS  Google Scholar 

  3. Schneider ML, Moore CF, Adkins MM (2011) The effects of prenatal alcohol exposure on behavior: rodent and primate studies. Neuropsychol Rev 21(2):186–203. doi:10.1007/s11065-011-9168-8

    Article  PubMed  Google Scholar 

  4. Eckardt MJ, File SE, Gessa GL, Grant KA, Guerri C, Hoffman PL, Kalant H, Koob GF, Li TK, Tabakoff B (1998) Effects of moderate alcohol consumption on the central nervous system. Alcohol Clin Exp Res 22(5):998–1040

    Article  PubMed  CAS  Google Scholar 

  5. Rasmussen C (2005) Executive functioning and working memory in fetal alcohol spectrum disorder. Alcohol Clin Exp Res 29(8):1359–1367

    Article  PubMed  Google Scholar 

  6. Pliszka SR (2005) The neuropsychopharmacology of attention-deficit/hyperactivity disorder. Biol Psychiatry 57(11):1385–1390. doi:10.1016/j.biopsych.2004.08.026

    Article  PubMed  CAS  Google Scholar 

  7. Pelham WE, Foster EM, Robb JA (2007) The economic impact of attention-deficit/hyperactivity disorder in children and adolescents. J Pediatr Psychol 32(6):711–727. doi:10.1093/jpepsy/jsm022

    Article  PubMed  Google Scholar 

  8. Hausknecht KA, Acheson A, Farrar AM, Kieres AK, Shen RY, Richards JB, Sabol KE (2005) Prenatal alcohol exposure causes attention deficits in male rats. Behav Neurosci 119(1):302–310. doi:10.1037/0735-7044.119.1.302

    Article  PubMed  CAS  Google Scholar 

  9. Hamilton DA, Akers KG, Rice JP, Johnson TE, Candelaria-Cook FT, Maes LI, Rosenberg M, Valenzuela CF, Savage DD (2010) Prenatal exposure to moderate levels of ethanol alters social behavior in adult rats: relationship to structural plasticity and immediate early gene expression in frontal cortex. Behav Brain Res 207(2):290–304. doi:10.1016/j.bbr.2009.10.012

    Article  PubMed  CAS  Google Scholar 

  10. Hellemans KG, Verma P, Yoon E, Yu WK, Young AH, Weinberg J (2010) Prenatal alcohol exposure and chronic mild stress differentially alter depressive- and anxiety-like behaviors in male and female offspring. Alcohol Clin Exp Res 34(4):633–645. doi:10.1111/j.1530-0277.2009.01132.x

    Article  PubMed  Google Scholar 

  11. Rathbun W, Druse MJ (1985) Dopamine, serotonin, and acid metabolites in brain regions from the developing offspring of ethanol-treated rats. J Neurochem 44(1):57–62

    Article  PubMed  CAS  Google Scholar 

  12. Cooper JD, Rudeen PK (1988) Alterations in regional catecholamine content and turnover in the male rat brain in response to in utero ethanol exposure. Alcohol Clin Exp Res 12(2):282–285

    Article  PubMed  CAS  Google Scholar 

  13. Druse MJ, Tajuddin N, Kuo A, Connerty M (1990) Effects of in utero ethanol exposure on the developing dopaminergic system in rats. J Neurosci Res 27(2):233–240. doi:10.1002/jnr.490270214

    Article  PubMed  CAS  Google Scholar 

  14. Shetty AK, Burrows RC, Phillips DE (1993) Alterations in neuronal development in the substantia nigra pars compacta following in utero ethanol exposure: immunohistochemical and Golgi studies. Neuroscience 52(2):311–322

    Article  PubMed  CAS  Google Scholar 

  15. Choong K, Shen R (2004) Prenatal ethanol exposure alters the postnatal development of the spontaneous electrical activity of dopamine neurons in the ventral tegmental area. Neuroscience 126(4):1083–1091. doi:10.1016/j.neuroscience.2004.04.041

    Article  PubMed  CAS  Google Scholar 

  16. Haycock PC (2009) Fetal alcohol spectrum disorders: the epigenetic perspective. Biol Reprod 81(4):607–617. doi:10.1095/biolreprod.108.074690

    Article  PubMed  CAS  Google Scholar 

  17. Mandrekar P (2011) Epigenetic regulation in alcoholic liver disease. World J Gastroenterol 17(20):2456–2464. doi:10.3748/wjg.v17.i20.2456

    Article  PubMed  CAS  Google Scholar 

  18. Shukla SD, Velazquez J, French SW, Lu SC, Ticku MK, Zakhari S (2008) Emerging role of epigenetics in the actions of alcohol. Alcohol Clin Exp Res 32(9):1525–1534. doi:10.1111/j.1530-0277.2008.00729.x

    Article  PubMed  CAS  Google Scholar 

  19. Zhou FC, Chen Y, Love A (2011) Cellular DNA methylation program during neurulation and its alteration by alcohol exposure. Birth Defects Res A Clin Mol Teratol 91(8):703–715. doi:10.1002/bdra.20820

    Article  PubMed  CAS  Google Scholar 

  20. Bleich S, Lenz B, Ziegenbein M, Beutler S, Frieling H, Kornhuber J, Bonsch D (2006) Epigenetic DNA hypermethylation of the HERP gene promoter induces down-regulation of its mRNA expression in patients with alcohol dependence. Alcohol Clin Exp Res 30(4):587–591. doi:10.1111/j.1530-0277.2006.00068.x

    Article  PubMed  CAS  Google Scholar 

  21. Bonsch D, Lenz B, Kornhuber J, Bleich S (2005) DNA hypermethylation of the alpha synuclein promoter in patients with alcoholism. NeuroReport 16(2):167–170

    Article  PubMed  Google Scholar 

  22. Bonsch D, Lenz B, Fiszer R, Frieling H, Kornhuber J, Bleich S (2006) Lowered DNA methyltransferase (DNMT-3b) mRNA expression is associated with genomic DNA hypermethylation in patients with chronic alcoholism. J Neural Transm 113(9):1299–1304. doi:10.1007/s00702-005-0413-2

    Article  PubMed  CAS  Google Scholar 

  23. Chen RZ, Akbarian S, Tudor M, Jaenisch R (2001) Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet 27(3):327–331. doi:10.1038/85906

    Article  PubMed  CAS  Google Scholar 

  24. Miyake K, Hirasawa T, Koide T, Kubota T (2012) Epigenetics in autism and other neurodevelopmental diseases. Adv Exp Med Biol 724:91–98. doi:10.1007/978-1-4614-0653-2_7

    Article  PubMed  CAS  Google Scholar 

  25. Gebicke-Haerter PJ (2012) Epigenetics of schizophrenia. Pharmacopsychiatry 45(Suppl 1):S42–S48. doi:10.1055/s-0032-1304652

    PubMed  CAS  Google Scholar 

  26. Mill J, Petronis A (2008) Pre- and peri-natal environmental risks for attention-deficit hyperactivity disorder (ADHD): the potential role of epigenetic processes in mediating susceptibility. J Child Psychol Psychiatry 49(10):1020–1030. doi:10.1111/j.1469-7610.2008.01909.x

    Article  PubMed  Google Scholar 

  27. Noldus LP, Spink AJ, Tegelenbosch RA (2001) EthoVision: a versatile video tracking system for automation of behavioral experiments. Behav Res Methods Instrum Comput 33(3):398–414

    Article  PubMed  CAS  Google Scholar 

  28. Kim KC, Kim P, Go HS, Choi CS, Yang SI, Cheong JH, Shin CY, Ko KH (2011) The critical period of valproate exposure to induce autistic symptoms in Sprague-Dawley rats. Toxicol Lett 201(2):137–142. doi:10.1016/j.toxlet.2010.12.018

    Article  PubMed  CAS  Google Scholar 

  29. Katz RJ, Schmaltz K (1980) Dopaminergic involvement in attention. A novel animal model. Prog Neuro Psychopharmacol 4(6):585–590

    Article  CAS  Google Scholar 

  30. McGaughy J, Sarter M (1998) Sustained attention performance in rats with intracortical infusions of 192 IgG-saporin-induced cortical cholinergic deafferentation: effects of physostigmine and FG 7142. Behav Neurosci 112(6):1519–1525

    Article  PubMed  CAS  Google Scholar 

  31. Kim P, Choi IH, dela Peña IC, Kim HJ, Kwon KJ, Park JH, Han SH, Ryu JH, Cheong JH, Shin CH (2012) A simple behavioral paradigm to measure impulsive behavior in an animal model of attention deficit hyperactivity disorder (ADHD) of the spontaneously hypertensive rats. Biomol Ther 20(1):125–131

    Google Scholar 

  32. Blackstone CD, Moss SJ, Martin LJ, Levey AI, Price DL, Huganir RL (1992) Biochemical characterization and localization of a non-N-methyl-D-aspartate glutamate receptor in rat brain. J Neurochem 58(3):1118–1126

    Article  PubMed  CAS  Google Scholar 

  33. Dhawan D, Ramos-Vara JA, Hahn NM, Waddell J, Olbricht GR, Zheng R, Stewart JC, Knapp DW (2012) DNMT1: An emerging target in the treatment of invasive urinary bladder cancer. Urol Oncol. doi:10.1016/j.urolonc.2012.03.015

  34. Hughes RN (2004) The value of spontaneous alternation behavior (SAB) as a test of retention in pharmacological investigations of memory. Neurosci Biobehav Rev 28(5):497–505. doi:10.1016/j.neubiorev.2004.06.006

  35. Barratt ES (1993) The use of anticonvulsants in aggression and violence. Psychopharmacol Bull 29(1):75–81

    Google Scholar 

  36. Bhatara V, Loudenberg R, Ellis R (2006) Association of attention deficit hyperactivity disorder and gestational alcohol exposure: an exploratory study. J Atten Disord 9(3):515–522. doi:10.1177/1087054705283880

    Article  PubMed  Google Scholar 

  37. Knopik VS, Heath AC, Jacob T, Slutske WS, Bucholz KK, Madden PA, Waldron M, Martin NG (2006) Maternal alcohol use disorder and offspring ADHD: disentangling genetic and environmental effects using a children-of-twins design. Psychol Med 36(10):1461–1471. doi:10.1017/S0033291706007884

    Article  PubMed  Google Scholar 

  38. Copp AJ, Greene ND, Murdoch JN (2003) The genetic basis of mammalian neurulation. Nat Rev Genet 4(10):784–793. doi:10.1038/nrg1181

    Article  PubMed  Google Scholar 

  39. Greene ND, Copp AJ (2009) Development of the vertebrate central nervous system: formation of the neural tube. Prenat Diagn 29(4):303–311. doi:10.1002/pd.2206

    Article  PubMed  CAS  Google Scholar 

  40. White PM, Morrison SJ, Orimoto K, Kubu CJ, Verdi JM, Anderson DJ (2001) Neural crest stem cells undergo cell-intrinsic developmental changes in sensitivity to instructive differentiation signals. Neuron 29(1):57–71

    Article  PubMed  CAS  Google Scholar 

  41. Takahashi T, Nowakowski RS, Caviness VS Jr (1996) The leaving or Q fraction of the murine cerebral proliferative epithelium: a general model of neocortical neuronogenesis. J Neurosci 16(19):6183–6196

    PubMed  CAS  Google Scholar 

  42. Caviness VS Jr (1982) Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H]thymidine autoradiography. Brain Res 256(3):293–302

    PubMed  Google Scholar 

  43. Goodwin DW, Schulsinger F, Hermansen L, Guze SB, Winokur G (1975) Alcoholism and the hyperactive child syndrome. J Nerv Ment Dis 160(5):349–353

    Article  PubMed  CAS  Google Scholar 

  44. Knopik VS, Sparrow EP, Madden PA, Bucholz KK, Hudziak JJ, Reich W, Slutske WS, Grant JD, McLaughlin TL, Todorov A, Todd RD, Heath AC (2005) Contributions of parental alcoholism, prenatal substance exposure, and genetic transmission to child ADHD risk: a female twin study. Psychol Med 35(5):625–635

    Article  PubMed  Google Scholar 

  45. Roizen NJ, Blondis TA, Irwin M, Rubinoff A, Kieffer J, Stein MA (1996) Psychiatric and developmental disorders in families of children with attention-deficit hyperactivity disorder. Arch Pediatr Adolesc Med 150(2):203–208

    Article  PubMed  CAS  Google Scholar 

  46. Stewart MA, DeBlois CS, Cummings C (1980) Psychiatric disorder in the parents of hyperactive boys and those with conduct disorder. J Child Psychol Psychiatry 21(4):283–292

    Article  PubMed  CAS  Google Scholar 

  47. Madras BK, Miller GM, Fischman AJ (2005) The dopamine transporter and attention-deficit/hyperactivity disorder. Biol Psychiatry 57(11):1397–1409. doi:10.1016/j.biopsych.2004.10.011

    Article  PubMed  CAS  Google Scholar 

  48. Spencer TJ, Biederman J, Madras BK, Dougherty DD, Bonab AA, Livni E, Meltzer PC, Martin J, Rauch S, Fischman AJ (2007) Further evidence of dopamine transporter dysregulation in ADHD: a controlled PET imaging study using altropane. Biol Psychiatry 62(9):1059–1061. doi:10.1016/j.biopsych.2006.12.008

    Article  PubMed  CAS  Google Scholar 

  49. Jucaite A, Fernell E, Halldin C, Forssberg H, Farde L (2005) Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: association between striatal dopamine markers and motor hyperactivity. Biol Psychiatry 57(3):229–238. doi:10.1016/j.biopsych.2004.11.009

    Article  PubMed  CAS  Google Scholar 

  50. Cheon KA, Ryu YH, Kim YK, Namkoong K, Kim CH, Lee JD (2003) Dopamine transporter density in the basal ganglia assessed with [123I]IPT SPET in children with attention deficit hyperactivity disorder. Eur J Nucl Med Mol Imaging 30(2):306–311. doi:10.1007/s00259-002-1047-3

    Article  PubMed  CAS  Google Scholar 

  51. Gainetdinov RR (2008) Dopamine transporter mutant mice in experimental neuropharmacology. Naunyn Schmiedebergs Arch Pharmacol 377(4–6):301–313. doi:10.1007/s00210-007-0216-0

    Article  PubMed  CAS  Google Scholar 

  52. Carboni E, Silvagni A, Valentini V, Di Chiara G (2003) Effect of amphetamine, cocaine and depolarization by high potassium on extracellular dopamine in the nucleus accumbens shell of SHR rats. An in vivo microdyalisis study. Neurosci Biobehav Rev 27(7):653–659

    Article  PubMed  CAS  Google Scholar 

  53. Heal DJ, Cheetham SC, Smith SL (2009) The neuropharmacology of ADHD drugs in vivo: insights on efficacy and safety. Neuropharmacology 57(7–8):608–618. doi:10.1016/j.neuropharm.2009.08.020

    Article  PubMed  CAS  Google Scholar 

  54. Zhu J, Reith ME (2008) Role of the dopamine transporter in the action of psychostimulants, nicotine, and other drugs of abuse. CNS Neurol Disord: Drug Targets 7(5):393–409

    Article  CAS  Google Scholar 

  55. Szot P, White SS, Veith RC, Rasmussen DD (1999) Reduced gene expression for dopamine biosynthesis and transport in midbrain neurons of adult male rats exposed prenatally to ethanol. Alcohol Clin Exp Res 23(10):1643–1649

    Article  PubMed  CAS  Google Scholar 

  56. Barbier E, Houchi H, Warnault V, Pierrefiche O, Daoust M, Naassila M (2009) Effects of prenatal and postnatal maternal ethanol on offspring response to alcohol and psychostimulants in long evans rats. Neuroscience 161(2):427–440. doi:10.1016/j.neuroscience.2009.03.076

    Article  PubMed  CAS  Google Scholar 

  57. Riherd DN, Galindo DG, Krause LR, Mayfield RD (2008) Ethanol potentiates dopamine uptake and increases cell surface distribution of dopamine transporters expressed in SK-N-SH and HEK-293 cells. Alcohol 42(6):499–508. doi:10.1016/j.alcohol.2008.04.009

    Article  PubMed  CAS  Google Scholar 

  58. Methner DN, Mayfield RD (2010) Ethanol alters endosomal recycling of human dopamine transporters. J Biol Chem 285(14):10310–10317. doi:10.1074/jbc.M109.029561

    Article  PubMed  CAS  Google Scholar 

  59. Maiya R, Buck KJ, Harris RA, Mayfield RD (2002) Ethanol-sensitive sites on the human dopamine transporter. J Biol Chem 277(34):30724–30729. doi:10.1074/jbc.M204914200

    Article  PubMed  CAS  Google Scholar 

  60. Esler M, Eikelis N, Schlaich M, Lambert G, Alvarenga M, Kaye D, El-Osta A, Guo L, Barton D, Pier C, Brenchley C, Dawood T, Jennings G, Lambert E (2008) Human sympathetic nerve biology: parallel influences of stress and epigenetics in essential hypertension and panic disorder. Ann NY Acad Sci 1148:338–348. doi:10.1196/annals.1410.064

    Article  PubMed  CAS  Google Scholar 

  61. Esler M, Alvarenga M, Pier C, Richards J, El-Osta A, Barton D, Haikerwal D, Kaye D, Schlaich M, Guo L, Jennings G, Socratous F, Lambert G (2006) The neuronal noradrenaline transporter, anxiety and cardiovascular disease. J Psychopharmacol 20(4 Suppl):60–66. doi:10.1177/1359786806066055

    Article  PubMed  Google Scholar 

  62. Larimore JL, Chapleau CA, Kudo S, Theibert A, Percy AK, Pozzo-Miller L (2009) Bdnf overexpression in hippocampal neurons prevents dendritic atrophy caused by Rett-associated MECP2 mutations. Neurobiol Dis 34(2):199–211. doi:10.1016/j.nbd.2008.12.011

    Article  PubMed  CAS  Google Scholar 

  63. Diaz de Leon-Guerrero S, Pedraza-Alva G, Perez-Martinez L (2011) In sickness and in health: the role of methyl-CpG binding protein 2 in the central nervous system. Eur J Neurosci 33(9):1563–1574. doi:10.1111/j.1460-9568.2011.07658.x

    Article  PubMed  Google Scholar 

  64. Nagarajan RP, Hogart AR, Gwye Y, Martin MR, LaSalle JM (2006) Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics 1(4):e1–e11

    Article  PubMed  Google Scholar 

  65. DasBanerjee T, Middleton FA, Berger DF, Lombardo JP, Sagvolden T, Faraone SV (2008) A comparison of molecular alterations in environmental and genetic rat models of ADHD: a pilot study. Am J Med Genet B Neuropsychiatr Genet 147B(8):1554–1563. doi:10.1002/ajmg.b.30877

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by research grants (09162KFDA566, 11182KFDA556) from the Korea Food & Drug Administration in 2009 and 2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chan Young Shin.

Additional information

Pitna Kim and Jin Hee Park are equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, P., Park, J.H., Choi, C.S. et al. Effects of Ethanol Exposure During Early Pregnancy in Hyperactive, Inattentive and Impulsive Behaviors and MeCP2 Expression in Rodent Offspring. Neurochem Res 38, 620–631 (2013). https://doi.org/10.1007/s11064-012-0960-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0960-5

Keywords

Navigation