Skip to main content

Advertisement

Log in

Differential Toxicity of 6-Hydroxydopamine in SH-SY5Y Human Neuroblastoma Cells and Rat Brain Mitochondria: Protective Role of Catalase and Superoxide Dismutase

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Oxidative stress and mitochondrial dysfunction are two pathophysiological factors often associated with the neurodegenerative process involved in Parkinson’s disease (PD). Although, 6-hydroxydopamine (6-OHDA) is able to cause dopaminergic neurodegeneration in experimental models of PD by an oxidative stress-mediated process, the underlying molecular mechanism remains unclear. It has been established that some antioxidant enzymes such as catalase (CAT) and superoxide dismutase (SOD) are often altered in PD, which suggests a potential role of these enzymes in the onset and/or development of this multifactorial syndrome. In this study we have used high-resolution respirometry to evaluate the effect of 6-OHDA on mitochondrial respiration of isolated rat brain mitochondria and the lactate dehydrogenase cytotoxicity assay to assess the percentage of cell death induced by 6-OHDA in human neuroblastoma cell line SH-SY5Y. Our results show that 6-OHDA affects mitochondrial respiration by causing a reduction in both respiratory control ratio (IC50 = 200 ± 15 nM) and state 3 respiration (IC50 = 192 ± 17 nM), with no significant effects on state 4o. An inhibition in the activity of both complex I and V was also observed. 6-OHDA also caused cellular death in human neuroblastoma SH-SY5Y cells (IC50 = 100 ± 9 μM). Both SOD and CAT have been shown to protect against the toxic effects caused by 6-OHDA on mitochondrial respiration. However, whereas SOD protects against 6-OHDA-induced cellular death, CAT enhances its cytotoxicity. The here reported data suggest that both superoxide anion and hydroperoxyl radical could account for 6-OHDA toxicity. Furthermore, factors reducing the rate of 6-OHDA autoxidation to its p-quinone appear to enhance its cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

6-OHDA:

6-Hydroxydopamine

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

CAT:

Catalase

GPx:

Glutathione peroxidase

RCR:

Respiratory control ratio

LDH:

Lactate dehydrogenase

E-MEM:

Eagle’s minimal essential medium

pQ:

p-Quinone of 6-OHDA

· sQH:

Semiquinone radical of 6-OHDA

O ·−2 :

Superoxide radical

H2O2 :

Hydrogen peroxide

·OH:

Hydroxyl radical

HO ·2 :

Hydroperoxyl radical

References

  1. Blum D, Torch S, Nissou MF, Benabid AL, Verna JM (2000) Extracellular toxicity of 6-hydroxydopamine on PC12 cells. Neurosci Lett 283:193–196. doi:10.1016/S0304-3940(00)00948-4

    Article  PubMed  CAS  Google Scholar 

  2. Bové J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson’s disease. NeuroRx 2:484–494. doi:10.1602/neurorx.2.3.484

    Article  PubMed  Google Scholar 

  3. Sauer H, Oertel WH (1994) Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 59:401–415. doi:10.1016/0306-4522(94)90605-X

    Article  PubMed  CAS  Google Scholar 

  4. Rodríguez M, Barroso-Chinea P, Abdala P, Obeso J, González-Hernández T (2001) Dopamine cell degeneration induced by intraventricular administration of 6-hydroxydopamine in the rat: similarities with cell loss in Parkinson’s disease. Exp Neurol 169:163–181. doi:10.1006/exnr.2000.7624

    Article  PubMed  Google Scholar 

  5. Soto-Otero R, Méndez-Álvarez E, Hermida-Ameijeiras A, López-Real AM, Labandeira-García JL (2002) Effects of (-)-nicotine and (-)-cotinine on 6-hydroxydopamine-induced oxidative stress and neurotoxicity: relevance for Parkinson’s disease. Biochem Pharmacol 64:125–135. doi:10.1016/S0006-2952(02)01070-5

    Article  PubMed  CAS  Google Scholar 

  6. Biswas SC, Ryu E, Park C, Malagelada C, Greene LA (2005) PUMA and p53 play required roles in death evoked in a cellular model of Parkinson disease. Neurochem Res 30:839–845. doi:10.1007/s11064-005-6877-5

    Article  PubMed  CAS  Google Scholar 

  7. Kulich SM, Horbinsky C, Patel M, Chu CT (2007) 6-Hydroxydopamine induces mitochondrial ERK activation. Free Radic Biol Med 43:372–383. doi:10.1016/j.freeradbiomed.2007.04.028

    Article  PubMed  CAS  Google Scholar 

  8. Gomez-Lazaro M, Galindo MF, Concannon CG, Segura MF, Fernandez-Gomez FJ, Llecha N, Comella JX, Prehn JHM, Jordan J (2008) 6-Hydroxydopamine activates the mitochondrial apoptosis pathway through p38 MAPK-mediated, p53-independent activation of Bax and PUMA. J Neurochem 104:1599–1612. doi:10.1111/j.1471-4159.2007.05115.x

    Article  PubMed  CAS  Google Scholar 

  9. Marti MJ, James CJ, Oo TF, Kelly WJ, Burke RE (1997) Early developmental destruction of terminals in the striatal target induces apoptosis in dopamine neurons of the substantia nigra. J Neurosci 17:2030–2039

    PubMed  CAS  Google Scholar 

  10. Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53:S26–S36. doi:10.1002/ana.10483

    Article  PubMed  CAS  Google Scholar 

  11. Graham DG, Tiffany SM, Bell WR, Gutknecht WF (1978) Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Mol Pharmacol 14:644–653

    PubMed  CAS  Google Scholar 

  12. Gee P, Davison AJ (1989) Intermediates in the aerobic autoxidation of 6-hydroxydopamine: relative importance under different reaction conditions. Free Radic Biol Med 6:271–284. doi:10.1016/0891-5849(89)90054-3

    Article  PubMed  CAS  Google Scholar 

  13. Halliwell B, Gutteridge JM, Cross CE (1992) Free radicals, antioxidants, and human disease: where are we now? J Lab Clin Med 119:598–620

    PubMed  CAS  Google Scholar 

  14. Soto-Otero R, Méndez-Álvarez E, Hermida-Ameijeiras A, Muñoz-Patiño AM, Labandeira-Garcia JL (2000) Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson’s disease. J Neurochem 74:1605–1612. doi:10.1046/j.1471-4159.2000.0741605.x

    Article  PubMed  CAS  Google Scholar 

  15. Méndez-Álvarez E, Soto-Otero R, Hermida-Ameijeiras A, López-Martín ME, Labandeira-García JL (2001) Effect of iron and manganese on hydroxyl radical production by 6-hydroxydopamine: mediation of antioxidants. Free Radic Biol Med 31:986–998. doi:10.1016/S0891-5849(01)00679-7

    Article  PubMed  Google Scholar 

  16. Blum D, Torch S, Lambeng N, Nissou MF, Benabid A-L, Sadoul R, Verna JM (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Progress Neurobiol 65:135–172. doi:10.1016/S0301-0082(01)00003-X

    Article  CAS  Google Scholar 

  17. Simola N, Morelli M, Carta AR (2007) The 6-hydroxydopamine model of Parkinson’s disease. Neurotox Res 11:151–167

    Article  PubMed  CAS  Google Scholar 

  18. Vercesi AE, Kowaltowski AJ, Grijalba MT, Meinicke AR, Castilho RF (1997) The role of reactive oxygen species in mitochondrial permeability transition. Biosci Rep 17:43–52. doi:10.1023/A:1027335217774

    Article  PubMed  CAS  Google Scholar 

  19. Lenaz G, Bovina C, D’Aurelio M, Fato R, Formiggini G, Genova ML, Giuliano G, Merlo Pich M, Paolucci U, Parenti Castelli G, Ventura B (2002) Role of mitochondria in oxidative stress and aging. Ann NY Acad Sci 959:199–213

    Article  PubMed  CAS  Google Scholar 

  20. Boveris A, Cadenas E, Stoppani AO (1976) Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem J 156:435–444

    PubMed  CAS  Google Scholar 

  21. Cadenas E, Boveris A, Ragan CI, Stopani AO (1977) Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys 180:248–257. doi:10.1016/0003-9861(77)90035-2

    Article  PubMed  CAS  Google Scholar 

  22. Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191:421–427

    PubMed  CAS  Google Scholar 

  23. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909. doi:10.1016/S0896-6273(03)00568-3

    Article  PubMed  CAS  Google Scholar 

  24. Vila M, Przedborski S (2003) Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci 4:365–375. doi:10.1038/nrn1100

    Article  PubMed  CAS  Google Scholar 

  25. Liss B, Haeckel O, Wildmann J, Miki T, Seino S, Roeper J (2005) K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nat Neurosci 8:1742–1751. doi:10.1038/nn1570

    Article  PubMed  CAS  Google Scholar 

  26. Parker WD Jr, Swerdlow RH (1998) Mitochondrial dysfunction in idiopathic Parkinson disease. Am J Hum Genet 62:758–762. doi:10.1086/301812

    Article  PubMed  Google Scholar 

  27. Schapira AHV, Cooper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54:823–827. doi:10.1111/j.1471-4159.1990.tb02325.x

    Article  PubMed  CAS  Google Scholar 

  28. Mazzio EA, Reams RR, Slimaqn KFA (2004) The role of oxidative stress, impaired glycolysis and mitochondrial respiratory redox failure in the cytotoxic effects of 6-hydroxydopamine in vitro. Brain Res 1004:29–44. doi:10.1016/j.brainres.2003.12.034

    Article  PubMed  CAS  Google Scholar 

  29. Glinka Y, Tipton K, Youdim M (1996) Nature of inhibition of mitochondrial respiratory complex I by 6-hydroxydopamine. J Neurochem 66:2004–2010

    Article  PubMed  CAS  Google Scholar 

  30. Glinka Y, Tipton KF, Youdim MBH (1998) Mechanism of inhibition of mitochondrial respiratory complex I by 6-hydroxydopamine and its prevention by desferroxamine. Eur J Pharmacol 351:121–129. doi:10.1016/S0014-2999(98)00279-9

    Article  PubMed  CAS  Google Scholar 

  31. Tiffany-Castiglioni E, Saneto RP, Proctor PH, Perez-Polo R (1982) Participation of active oxygen species in 6-hydroxydopamine toxicity to a human neuroblastoma cell line. Biochem Pharmacol 31:181–188. doi:10.1016/0006-2952(82)90208-8

    Article  PubMed  CAS  Google Scholar 

  32. Simantov R, Blinder E, Ratovitski T, Tauber M, Gabbay M, Porat S (1996) Dopamine-induced apoptosis in human neuronal cells: inhibition by nucleic acids antisense to the dopamine transporter. Neuroscience 74:39–50. doi:10.1016/0306-4522(96)00102-9

    Article  PubMed  CAS  Google Scholar 

  33. Storch A, Kaftan A, Burkhardt K, Schwarz J (2000) 6-Hydroxydopamine toxicity towards human SH-SY5Y dopaminergic neuroblastoma cells: independent of mitochondrial energy metabolism. J Neural Transm 107:281–293. doi:10.1007/s007020050023

    Article  PubMed  CAS  Google Scholar 

  34. Asanuma M, Hirata H, Cadet JL (1998) Attenuation of 6-hydroxydopamine-induced dopaminergic nigrostriatal lesions in superoxide dismutase transgenic mice. Neuroscience 85:907–917. doi:10.1016/S0306-4522(97)00665-9

    Article  PubMed  CAS  Google Scholar 

  35. Kabuto H, Yokoi I, Iwata-Ichikawa E, Ogawa N (1999) EPC-K1, A hydroxyl radical scavenger, prevents 6-hydroxydopamine-induced dopamine depletion in the mouse striatum by up-regulation of catalase activity. Neurochem Res 24:1543–1548. doi:10.1023/A:1021152115752

    Article  PubMed  CAS  Google Scholar 

  36. Barkats M, Millecamps S, Bilang-Bleuel A, Mallet J (2002) Neuronal transfer of the human Cu/Zn superoxide dismutase gene increases the resistance of dopaminergic neurons to 6-hydroxydopamine. J Neurochem 82:101–109. doi:10.1046/j.1471-4159.2002.00952.x

    Article  PubMed  CAS  Google Scholar 

  37. Hanrott K, Gudmunsen L, O’Neill MJ, Wonnacott S (2006) 6-Hydroxydopamine-induced apoptosis is mediated via extracellular auto-oxidation and caspase 3-dependent activation of protein kinase C delta. J Biol Chem 281:5373–5382. doi:10.1074/jbc.M511560200

    Article  PubMed  CAS  Google Scholar 

  38. Choi W-S, Yoon S-Y, Oh TH, Choi E-J, O’Malley KL, Oh YJ (1999) Two distinct mechanisms are involved in 6-hydroxydopamine- and MPP+-induced dopaminergic neuronal cell death: role of caspases, ROS, and JNK. J Neurosci Res 57:86–94. doi:10.1002/(SICI)1097-4547(19990701)57:1<86::AID-JNR9>3.0.CO;2-E

    Article  PubMed  CAS  Google Scholar 

  39. Saito Y, Nishio K, Ogawa Y, Kinumi T, Yoshida Y, Masuo Y, Niki E (2007) Molecular mechanisms of 6-hydroxydopamine-induced cytotoxicity in PC12 cells: involvement of hydrogen peroxide-dependent and -independent action. Free Radic Biol Med 42:675–685. doi:10.1016/j.freeradbiomed.2006.12.004

    Article  PubMed  CAS  Google Scholar 

  40. Izumi Y, Sawada H, Sakka N, Yamamoto N, Kume T, Katsuki H, Shimohama S, Akaike A (2005) p-Quinone mediates 6-hydroxydopamne-induced dopaminergic neuronal death and ferrous iron accelerates the conversion of p-quinone into melanin extracellularly. J Neurosci Res 79:849–860. doi:10.1002/jnr.20382

    Article  PubMed  CAS  Google Scholar 

  41. Rosenthal RE, Hamud F, Fiskum G, Varghese PJ, Sharpe S (1987) Cerebral schemia and perfusion: prevention of brain mitochondrial injury by lidofalzine. J Cereb Blood Flow Metab 7:752–758

    Article  PubMed  CAS  Google Scholar 

  42. Markwell MAK, Haas SM, Bieber LL, Tolbert NE (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210. doi:10.1016/0003-2697(78)90586-9

    Article  PubMed  CAS  Google Scholar 

  43. Chance B, Williams GR (1956) Respiratory enzymes in oxidative phosphorylation. VI. The effects of adenosine diphosphate on azide-treated mitochondria. J Biol Chem 221:477–489

    PubMed  CAS  Google Scholar 

  44. Zhang S, Fu J, Zhou Z (2004) In vitro effect of manganese chloride exposure on reactive oxygen species generation and respiratory chain complexes activities of mitochondria isolated from rat brain. Toxicol Vitro 18:71–77. doi:10.1016/j.tiv.2003.09.002

    Article  Google Scholar 

  45. Brzozowski MJ, Alcantara SL, Iravani MM, Rose S, Jenner P (2011) The effect of nNOS inhibitors on toxin-induced cell death in dopaminergic cell lines depends on the extent of enzyme expression. Brain Res 1404:21–30. doi:10.1016/j.brainres.2011.05.063

    Article  PubMed  CAS  Google Scholar 

  46. Heikkila RE, Cohen G (1973) 6-Hydroxydopamine: evidence for superoxide radical as an oxidative intermediate. Science 181:456–457. doi:10.1126/science.181.4098.456

    Article  PubMed  CAS  Google Scholar 

  47. Ossola B, Kääräinen TM, Raasmaja A, Männistö PT (2008) Time-dependent protective and harmful effects of quercetin on 6-OHDA-induced toxicity in neuronal SH-SY5Y cells. Toxicology 250:1–8. doi:10.1016/j.tox.2008.04.001

    Article  PubMed  CAS  Google Scholar 

  48. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658. doi:10.1111/j.1471-4159.2006.03907.x

    Article  PubMed  CAS  Google Scholar 

  49. Bové J, Perier C (2012) Neurotoxin-based models of Parkinson’s disease. Neuroscience 211:51–76. doi:10.1016/j.neuroscience.2011.10.057

    Article  PubMed  Google Scholar 

  50. Gnaiger E (2008) Polarographic oxygen sensors, the oxygraph, and high-resolution respirometry to assess mitochondrial function. In: Dyens J, Will Y (eds) Drug-induced mitochondrial dysfunction. Wiley, Hoboken, pp 327–352

    Google Scholar 

  51. Berman SB, Hastings TG (1999) Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease. J Neurochem 73:1127–1137. doi:10.1046/j.1471-4159.1999.0731127.x

    Article  PubMed  CAS  Google Scholar 

  52. Masini A, Ceccarelli-Stanzani D, Muscatello U (1983) The effect of oligomycin on rat liver mitochondria respiring in state 4. FEBS Lett 160:137–140. doi:10.1016/0014-5793(83)80953-3

    Article  PubMed  CAS  Google Scholar 

  53. Pryor WA (1986) Oxy-radicals and related species: their formation, lifetimes, and reactions. Ann Rev Physiol 48:657–667. doi:10.1146/annurev.physiol.48.1.657

    Article  CAS  Google Scholar 

  54. Enochs WS, Sarna T, Zecca L, Riley PA, Swartz HM (1994) The roles of neuromelanin, binding of metal ions, and oxidative cytotoxicity in the pathogenesis of Parkinson’s disease: a hypothesis. J Neural Transm 7:83–100. doi:10.1007/BF02260963

    Article  CAS  Google Scholar 

  55. Linert W, Herlinger E, Jameson RF, Kienzl E, Jellinger K, Youdim MBH (1996) Dopamine, 6-hydroxydopamine, iron, and dioxygen-their mutual interactions and possible implication in the development of Parkinson’s disease. Biochim Biophys Acta 1316:160–168. doi:10.1016/0925-4439(96)00020-8

    Article  PubMed  Google Scholar 

  56. Tatsuta T, Langer T (2008) Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 27:306–314. doi:10.1038/sj.emboj.7601972

    Article  PubMed  CAS  Google Scholar 

  57. Aikens J, Dix JA (1991) Perhydroxyl radical (HOO·) initiated lipid peroxidation. The role of fatty acid hydroperoxides. J Biol Chem 266:15091–15098

    PubMed  CAS  Google Scholar 

  58. Gebicki S, Gebicki JM (1993) Formation of peroxides in amino acids and proteins exposed to oxygen free radicals. Biochem J 289:743–749

    PubMed  CAS  Google Scholar 

  59. Fu S, Gebicki S, Jessup W, Gebicki JM, Dean RT (1995) Biological fate of amino acid, peptide and protein hydroperoxides. Biochem J 311:821–827

    PubMed  CAS  Google Scholar 

  60. Hermida-Ameijeiras A, Méndez-Álvarez E, Sánchez-Iglesias S, Sanmartín-Suárez C, Soto-Otero R (2004) Autoxidation and MAO-mediated metabolism of dopamine as a potential cause of oxidative stress: role of ferrous and ferric ions. Neurochem Int 45:103–116. doi:10.1016/j.neuint.2003.11.018

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants SAF2007-66114 (to R. S.-O.) from the Ministerio de Ciencia e Innovación (Madrid, Spain) with the contribution of the European Regional Development Fund and 09CSA005298PR (to E. M.-A.) from the Xunta de Galicia (Santiago de Compostela, Spain). J. I.-G. was supported by a scholarship from the Fundación Obra Social La Caixa (Barcelona, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Soto-Otero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iglesias-González, J., Sánchez-Iglesias, S., Méndez-Álvarez, E. et al. Differential Toxicity of 6-Hydroxydopamine in SH-SY5Y Human Neuroblastoma Cells and Rat Brain Mitochondria: Protective Role of Catalase and Superoxide Dismutase. Neurochem Res 37, 2150–2160 (2012). https://doi.org/10.1007/s11064-012-0838-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0838-6

Keywords

Navigation