Skip to main content
Log in

A Possible Role of the Non-GAT1 GABA Transporters in Transfer of GABA From GABAergic to Glutamatergic Neurons in Mouse Cerebellar Neuronal Cultures

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cultures of dissociated cerebellum from 7-day-old mice were used to investigate the mechanism involved in synthesis and cellular redistribution of GABA in these cultures consisting primarily of glutamatergic granule neurons and a smaller population of GABAergic Golgi and stellate neurons. The distribution of GAD, GABA and the vesicular glutamate transporter VGlut-1 was assessed using specific antibodies combined with immunofluorescence microscopy. Additionally, tiagabine, SKF 89976-A, betaine, β-alanine, nipecotic acid and guvacine were used to inhibit the GAT1, betaine/GABA (BGT1), GAT2 and GAT3 transporters. Only a small population of cells were immuno-stained for GAD while many cells exhibited VGlut-1 like immuno-reactivity which, however, never co-localized with GAD positive neurons. This likely reflects the small number of GABAergic neurons compared to the glutamatergic granule neurons constituting the majority of the cells. GABA uptake exhibited the kinetics of high affinity transport and could be partly (20%) inhibited by betaine (IC50 142 μM), β-alanine (30%) and almost fully (90%) inhibited by SKF 89976-A (IC50 0.8 μM) or nipecotic acid and guvacine at 1 mM concentrations (95%). Essentially all neurons showed GABA like immunostaining albeit with differences in intensity. The results indicate that GABA which is synthesized in a small population of GAD-positive neurons is redistributed to essentially all neurons including the glutamatergic granule cells. GAT1 is not likely involved in this redistribution since addition of 15 μM tiagabine (GAT1 inhibitor) to the culture medium had no effect on the overall GABA content of the cells. Likewise the BGT1 transporter cannot alone account for the redistribution since inclusion of 3 mM betaine in the culture medium had no effect on the overall GABA content. The inhibitory action of β-alanine and high concentrations of nipecotic acid and guvacine on GABA transport strongly suggests that also GAT2 or GAT3 (HUGO nomenclature) could play a role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sonnewald U, Olstad E, Qu H, Babot Z, Cristòfol R, Suñol C, Schousboe A, Waagepetersen HS (2004) First direct demonstration of extensive GABA synthesis in mouse cerebellar neuronal cultures. J Neurochem 91:796–803

    Article  CAS  PubMed  Google Scholar 

  2. Sonnewald U, Kortner TM, Qu H, Olstad E, Suñol C, Bak LK, Schousboe A, Waagepetersen HS (2006) Demonstration of extensive GABA synthesis in a small population of GAD positive neurons in cerebellar cultures by the use of pharmacological tools. Neurochem Int 48:572–578

    CAS  PubMed  Google Scholar 

  3. Pearce BR, Currie DN, Beale R, Dutton GR (1981) Potassium-stimulated, calcium-dependent release of [3H]GABA from neuron- and glia-enriched cultures of cells dissociated from rat cerebellum. Brain Res 206:485–489

    Article  CAS  PubMed  Google Scholar 

  4. Drejer J, Schousboe A (1989) Selection of a pure cerebellar granule cell culture by kainate treatment. Neurochem Res 14:751–754

    Article  CAS  PubMed  Google Scholar 

  5. Madsen K, White HS, Clausen RP, Frølund B, Larsson OM, Krogsgaard-Larsen P, Schousboe A (2007) Functional and pharmacological aspects of GABA transporters. In: Lajtha A, Reith M (eds) Handbook of neurochemistry and molecular neurobiology: neural membranes and transport, 3rd edn. Springer, Berlin, pp 285–304

    Google Scholar 

  6. Madsen KB, Larsson OM, Schousboe A (2008) Regulation of excitation by GABA neurotransmission: focus on metabolism and transport. Results Probl Cell Differ 44:201–221

    Article  CAS  PubMed  Google Scholar 

  7. Clausen RP, Frølund B, Larsson OM, Schousboe A, Krogsgaard-Larsen P, White HS (2006) A novel selective γ-aminobutyric acid transport inhibitor demonstrates a functional role for GABA transporter subtype GAT2/BGT-1 in the CNS. Neurochem Int 48:637–642

    CAS  PubMed  Google Scholar 

  8. Schousboe A, Thorbek P, Hertz L, Krogsgaard-Larsen P (1979) Effects of GABA analogues of restricted conformation on GABA transport in astrocytes and brain cortex slices and on GABA receptor binding. J Neurochem 33:181–189

    Article  CAS  PubMed  Google Scholar 

  9. Liu Q-R, López-Corcuera B, Mandiyan S, Nelson H, Nelson N (1993) Molecular characterization of four pharmacologically distinct γ-aminobutyric acid transporters in mouse brain. J Biol Chem 268:2106–2112

    CAS  PubMed  Google Scholar 

  10. Borden LA (1996) GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem Int 29:335–356

    Article  CAS  PubMed  Google Scholar 

  11. Saito K, Barber R, Wu J, Matsuda T, Roberts E, Vaughn JE (1974) Immunohistochemical localization of glutamate decarboxylase in rat cerebellum. Proc Natl Acad Sci USA 71:269–273

    Article  CAS  PubMed  Google Scholar 

  12. Erickson JD, De Gois S, Varoqui H, Shafer MK, Weihe E (2006) Activity-dependent regulation of vesicular glutamate and GABA transporters: a means to scale quantal size. Neurochem Int 48:643–649

    CAS  PubMed  Google Scholar 

  13. Schousboe A, Meier E, Drejer J, Hertz L (1989) Preparation of primary cultures of mouse (Rat) cerebellar granule cells. In: Shahar A, de Vellis J, Vernadakis A, Haber B (eds) A dissection and tissue culture manual of the nervous system. Alan R. Liss Inc, New York, pp 203–206

    Google Scholar 

  14. Bak LK, Schousboe A, Sonnewald U, Waagepetersen HS (2006) Glucose is necessary to maintain neurotransmitter homeostasis during synaptic activity in cultured glutamatergic neurons. J Cereb Blood Flow Metab 26:1285–1297

    Article  CAS  PubMed  Google Scholar 

  15. Hertz L, Juurlink BHJ, Szuchet S (1985) Cell cultures. In: Lajtha A (ed) Handbook of Neurochemistry, vol 8. Plenum Publ Corp, New York, pp 603–661

    Google Scholar 

  16. Larsson OM, Johnston GAR, Schousboe A (1983) Differences in uptake kinetics of cis-3-aminocyclohexane carboxylic acid into neurons and astrocytes in primary cultures. Brain Res 260:279–285

    Article  CAS  PubMed  Google Scholar 

  17. Lopez-Corcuera B, Liu QR, Mandiyan S, Nelson H, Nelson N (1992) Expression of a mouse brain cDNA encoding novel gamma-aminobutyric acid transporter. J Biol Chem 267:17491–173493

    CAS  PubMed  Google Scholar 

  18. White WF, Snodgrass SR, Dichter M (1980) Identification of GABA neurons in rat cortical cultures by GABA uptake autoradiography. Brain Res 190:139–152

    Article  CAS  PubMed  Google Scholar 

  19. Suñol C, Babot Z, Fonfría E, Galofré M, García D, Herrera N, Iraola S, Vendrell I (2008) Studies with neuronal cells: from basic studies of mechanisms of neurotoxicity to the prediction of chemical toxicity. Toxicol In Vitro 22:1350–1355

    Article  PubMed  Google Scholar 

  20. Durkin MM, Smith KE, Borden LA, Weinshank RL, Branchek TA, Gustafson EL (1995) Localization of messenger RNAs encoding three GABA transporters in rat brain: an in situ hybridization study. Mol Brain Res 33:7–21

    Article  CAS  PubMed  Google Scholar 

  21. Somogyi P, Hodgson AJ, Chubb IW, Penke B, Erdei A (1985) Antisera to gamma-aminobutyric acid. II. Immunocytochemical application to the central nervous system. J Histochem Cytochem 33:240–248

    CAS  PubMed  Google Scholar 

  22. Storm-Mathiesen J, Ottersen OP (1987) Tracing of neurons with glutamate or gamma-aminobutyrate as putative transmitters. Biochem Soc Trans 15:210–213

    Google Scholar 

  23. Ottersen OP (1987) Postembedding light- and electron microscopic immunocytochemistry of amino acids: description of a new model system allowing identical conditions for specificity testing and tissue processing. Exp Brain Res 69:167–174

    Article  CAS  PubMed  Google Scholar 

  24. Schousboe A, Larsson OM, Sarup A, White HS (2004) Role of the betaine/GABA transporter (BGT-1/GAT2) for the control of epilepsy. Eur J Pharmacol 500:281–287

    Article  CAS  PubMed  Google Scholar 

  25. White HS, Watson WP, Hansen S, Slough S, Sarup A, Bolvig T, Petersen G, Larsson OM, Clausen RP, Frølund B, Krogsgaard-Larsen P, Schousboe A (2005) First demonstration of a functional role for CNS betaine/GABA transporter (mGAT2) based on synergistic anticonvulsant action among inhibitors of mGAT1 and mGAT2. J Pharmacol Exp Ther 312:866–874

    Article  CAS  PubMed  Google Scholar 

  26. Smith MD, Saunders GW, Wilcox KS, Clausen RP, Frølund B, Krogsgaard-Larsen P, Larsson OM, Schousboe A, White HS (2008) Inhibition of the betaine-GABA transporter (mGAT2/BGT-1) modulates spontaneous electrographic bursting in the medial entorhinal cortex (mEC). Epilepsy Res 79:6–13

    Article  CAS  PubMed  Google Scholar 

  27. Madsen KB, Clausen RP, Larsson OM, Krogsgaard-Larsen P, Schousboe A, White HS (2009) Synaptic and extrasynaptic GABA transporters as targets for anti-epileptic drugs. J Neurochem 109(suppl 1):139–144

    Article  CAS  PubMed  Google Scholar 

  28. Madsen KK, White HS, Schousboe A (2010) Neuronal and non-neuronal GABA transporters as targets for antiepileptic drugs. Pharmacol Ther 125:394–401

    Article  CAS  PubMed  Google Scholar 

  29. Rossi DJ, Hamann M, Attwell D (2003) Multiple modes of GABAergic inhibition of rat cerebellar granule cells. J Physiol 548:97–110

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The secretarial (Ms. Hanne Danø) and the technical assistance (Lene Vigh, Heidi Nielsen and Sara Sánchez-Redondo) is cordially acknowledged. This work was supported by grants from FIS 061212 (Ministry of Health, Spain), 2009/SGR/214 (CIRIT, Generalitat de Catalunya, Spain) and The Danish Medical Research Council (22-03-250; 22-04-0314). Z. B. was recipient of a predoctoral fellowship from the Spanish Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Schousboe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suñol, C., Babot, Z., Cristòfol, R. et al. A Possible Role of the Non-GAT1 GABA Transporters in Transfer of GABA From GABAergic to Glutamatergic Neurons in Mouse Cerebellar Neuronal Cultures. Neurochem Res 35, 1384–1390 (2010). https://doi.org/10.1007/s11064-010-0196-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0196-1

Keywords

Navigation