Skip to main content
Log in

Antiperoxidative and Antiinflammatory Effect of Sida Cordifolia Linn. on Quinolinic Acid Induced Neurotoxicity

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Sida cordifolia is a plant belonging to the Malvaceae family used in many ayurvedic preparations. This study aimed at assessing the effects of ethanolic extract of Sida cordifolia root on quinolinic acid (QUIN) induced neurotoxicity and to compare its effect with the standard drug deprenyl in rat brain. Rats were divided into six groups: (1) control group (2) QUIN (55 μg/100 g bwt/day) (3) 50% ethanolic plant extract treated group (50 mg/100 g bwt/day) (4) Deprenyl (100 μg/100 g bwt/day) (5) QUIN (55 μg/100 g bwt/day) + 50% ethanolic plant extract treated group (50 mg/100 g bwt/day) (6) QUIN (55 μg/100 g bwt/day) + Deprenyl (100 μg/100 g bwt/day). At the end of the experimental period a status of lipid peroxidation products, protein peroxidation product, activities of the scavenging enzymes and the activities of the inflammatory markers were analyzed. Results revealed that the lipid peroxidation products decreased and the activities of the scavenging enzymes increased significantly in the brain of the plant extract treated group, deprenyl treated group and also in the coadminstered groups. The activities of markers of inflammatory responses such as cyclooxygenase and lipoxygenase were found to be significantly increased in the QUIN treated rats and this was decreased upon the administration of plant extract and deprenyl. In short, the study revealed that 50% ethanolic extract of Sida cordifolia has got potent antioxidant and antiinflammatory activity and the activity is comparable with the standard drug deprenyl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Diwan PV, Kanth VR (1999) Analgesic, anti-inflammatory and hypoglycemic activities of Sida cordifolia. Phytother Res 13:75–77

    Article  PubMed  Google Scholar 

  2. Rastogi RP, Malhotra BN (1985) Compendium of Indian medicinal plants. J Indian Med 4:674

    Google Scholar 

  3. Nagashayana N, Sankarankutty P, Nampoothiri MR et al (2000) Association of l-DOPA with recovery following ayurvedic medication in Parkinson’s disease. J Neurol Sci 176:124

    Article  CAS  PubMed  Google Scholar 

  4. Ghosh S, Dutt A (1930) Chemical examination of Sida cordifolia Linn. J Indian Chem Soc 7:825

    CAS  Google Scholar 

  5. Kubavat JB, Asdaq SM (2009) Role of Sida cordifolia L. leaves on biochemical and antioxidant profile during myocardial injury. J Ethnopharmacol 124(1):162–165

    Article  CAS  PubMed  Google Scholar 

  6. Auddy B, Ferreira M, Blasina F et al (2003) Screening of antioxidant activity of three Indian medicinal plants, traditionally used for the management of neurodegenerative diseases. J Ethnopharmacol 84(2–3):131–138

    Article  CAS  PubMed  Google Scholar 

  7. Dhalwal K, Deshpande YS, Purohit AP et al (2005) Evaluation of the antioxidant activity of Sida cordifolia. Pharm Biol 43:754–761

    Article  Google Scholar 

  8. Philip BK, Muralidharan A, Natarajan B et al (2008) Preliminary evaluation of anti-pyretic and anti-ulcerogenic activities of Sida cordifolia methanolic extract. Fitotherapia 79:229–231

    Article  Google Scholar 

  9. Knoll J (1983) Deprenyl (selegeline): the history of its development and pharmacological action. Acta Neurol Scand (Suppl) 95:57–80

    Article  CAS  Google Scholar 

  10. Maruyama W, Takahashi T, Naoi M (1998) Deprenyl protects human dopaminergic neuroblastma SH-SY5Y cells from apoptosis induced by peroxynitrite and nitric oxide. J Neurochem 70:2510–2515

    Article  CAS  PubMed  Google Scholar 

  11. Magyar K, Szende B, Lengyel J, Tekes K (1996) The pharmacology of B-type selective monoamine oxidase inhibitors; milestones in deprenyl research. J Neural Transm (Suppl) 48:29–43

    CAS  Google Scholar 

  12. Lieberman A (1992) Long-term experience with selegeline and levodopa in Parkinson’s disease. Neurol (Suppl) 42:32–36

    CAS  Google Scholar 

  13. Santamaria A, Galvan-Arzate S, Lisy V et al (2001) Quinolinic acid induces oxidative stress in rat brain synaptosomes. Neuroreport 12:871–874

    Article  CAS  PubMed  Google Scholar 

  14. Foster AC, Collins JF, Schwarcz R (1983) On the excitotoxic properties of quinolinic acid, 2,3-pyridine dicarboxylic acids and structurally related compounds. Neuropharmacology 22:1331–1342

    Article  CAS  PubMed  Google Scholar 

  15. During MJ, Heyes MP, Freese A et al (1989) Quinolinic acid concentrations in striatal extracellular fluid reach potentially neurotoxic levels following systemic l-tryptophan loading. Brain Res 476:384–387

    Article  CAS  PubMed  Google Scholar 

  16. Santamaria A, Rios C (1993) MK-801 an N-Methyl-d-Aspartate receptor antagonist, blocks quinolinic acid induced lipid peroxidation in rat corpus striatum. Neurosci Lett 159:51–54

    Article  CAS  PubMed  Google Scholar 

  17. Santamaria A, Vazquez-Roman B, La Cruz VP et al (2005) Selenium reduces the proapoptotic signaling associated to NF-KappaB pathway and stimulates glutathione peroxidase activity during excitotoxic damage produced by quinolate in rat corpus striatum. Synapse 58:258–266

    Article  CAS  PubMed  Google Scholar 

  18. Hume CW (1972) The UFAW handbook on the care and management of laboratory animals. Churchill Livigstone, Edinburgh/London

    Google Scholar 

  19. Fedele E, Foster AC (1993) An evaluation of the role of extracellular aminoacids in the delayed neurodegeneration induced by quinolinic acid in the rat striatum. Neuroscience 52:911–917

    Article  CAS  PubMed  Google Scholar 

  20. Muge K, Husnu AB, Cetin P et al (2008) Protective effects of deprenyl in transient cerebral ischemia in rats. Chin J Physiol 51:275–281

    Google Scholar 

  21. Folch J, Less M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  22. Ohkawa H, Ohishi N, Yagi K (1979) Assay of lipid peroxide in animal tissue by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  23. Mair RD, Hall T (1970) Determination of organic peroxides by physical chemical and colorimetric methods. In: Swern D, Wiley CD (eds) Inorganic peroxides II, vol 2. Wiley/Intersciences, New York, pp 535–538

  24. Reckangel RO, Ghoshal AK (1966) Quantitative estimation of peroxidative degeneration of rat liver micrososmal and mitochondrial lipids after carbon tetrachloride poisoning. Exp Mol Pathol 5:413–418

    Article  Google Scholar 

  25. Lowry OH, Rosebrough NJ, Farr AL (1951) Protein measurement with the folin phenol reagent. J Biol chem 193:265–275

    CAS  PubMed  Google Scholar 

  26. Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Ind J Biochem Biophys 21:130–132

    CAS  Google Scholar 

  27. Maehly AC, Chance B (1954) The assay of catalase and peroxides. In: Glick D (ed) Methods of biochemical analysis, vol 1. Interscience, New York, pp 357–424

    Chapter  Google Scholar 

  28. David M, Richard JS (1983) Glutathione reductase. In: Bermeyer HU Jr (ed) Methods of enzymatic analysis. Verlagchemie GmbH, Weinhein, pp 258–265

    Google Scholar 

  29. Lawerence RA, Burk RF (1976) Glutathione peroxidase activity in selenium deficient rat liver. Biochem Biophys Res Commun 71:952–958

    Article  Google Scholar 

  30. Agergurd N, Jense PJ (1982) Procedure for blood glutathione peroxidase determination in cattle and swine. Anta Vet Scand 23:515–529

    Google Scholar 

  31. Patterson JW, Lazarow A (1955) Determination of glutathione. In: Glick D (ed) Methods of biochemical analysis, vol 2. Interscience, NewYork, pp 259–279

    Chapter  Google Scholar 

  32. Falholt K, Lund B, Falholt W (1973) An easy colorimetric micromethod for routine determination of free fatty acids in plasma. Clin Chem Acta 46:105–111

    Article  CAS  Google Scholar 

  33. Tabor CW, Tabor H, Rosenthal SM (1954) Purification of amine oxidase from beef plasma. J Biol Chem 208:645–661

    CAS  PubMed  Google Scholar 

  34. Huh HY, Pearce SF, Yesner LM et al (1996) Regulated expression of CD36 during monocyte to macrophage differentiation: potential role of CD36 in foam cell formation. Blood J 87:2020

    CAS  Google Scholar 

  35. Axelrod B, Cheesbrough TM, Laasko S (1981) Lipoxygenase in soybeans. In: Lowenstein JM (ed) Methods enzymol, vol 71, p 441

  36. Shimizu T, Kondo K, Hayaishi O (1981) Role of prostaglandin endoperoxidases in the serum thiobarbituric acid reaction. Arch Biochim Biophys 206:271–276

    Article  CAS  Google Scholar 

  37. Abraham ZR, Packer L (1993) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol Part C 233:357–363

    Google Scholar 

  38. Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291

    CAS  PubMed  Google Scholar 

  39. Docampo R (1995) Antioxidant mechanisms. In: Marr J, Muller M (eds) Biochemistry and molecular biology of parasites. Academic Press, London, p 147

    Chapter  Google Scholar 

  40. Sies H (1985) Oxidative stress: introductory remarks. In: Sies H (ed) Oxidative stress. Academic press, London, p 1

    Google Scholar 

  41. Dexter DT, Carter CJ, Wells FR et al (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52:381–389

    Article  CAS  PubMed  Google Scholar 

  42. Yoshikawa T (1993) Free radicals and their scavengers in Parkinson’s disease. Eur Neurol 33:60–68

    Article  PubMed  Google Scholar 

  43. Santamaria A, Salvatierra-Sanchez R, Vazquez-Roman B et al (2003) Protective effects of the antioxidant selenium on quinolinic acid-induced neurotoxicity in rats: in vitro and in vivo studies. J Neurochem 86:479–488

    Article  CAS  PubMed  Google Scholar 

  44. Behan WM, Mc Donald M, Darlington LG (1999) Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: protection by melatonin and Deprenyl. Br J Pharmacol 128:1754–1760

    Article  CAS  PubMed  Google Scholar 

  45. Kitani K, Minami C, Isobe K et al (2002) Why (-) deprenyl prolongs survivals of experimental animals: increase of anti-oxidant enzymes in brain and other body tissues as well as mobilization of various humoral factors maylead to systemic anti-aging effects. Mech Ageing Dev 123:1087–1100

    Article  CAS  PubMed  Google Scholar 

  46. Thomas T (2000) Monoamine oxidase-B inhibitors in the treatment of Alzheimer disease. Neurobiol Aging 21:343–348

    Article  CAS  PubMed  Google Scholar 

  47. Kwon YS, Ann HS, Nabeshima T et al (2004) Selegiline potentiates the effects of EGb 761 in response to ischemic brain injury. Neurochem Int 45:157–170

    Article  CAS  PubMed  Google Scholar 

  48. Maia FD, Pitombeira BS, Araujo DT et al (2004) l-Deprenyl prevents lipid peroxidation and memory deficits produced by cerebral ischemia in rats. Cell Mol Eurobiol 24:87–100

    Article  CAS  Google Scholar 

  49. Muge K, Husnu AB, Cetin P et al (2008) Protective effects of deprenyl in transient cerebral ischemia in rats. Chin J Physiol 51(5):275–281

    Google Scholar 

  50. Sutradhar RK, Rahman AM, Ahmad M et al (2007) Anti-inflammatory and analgesic alkaloid from Sida cordifolia linn. Pak J Pharm Sci 20:185–188

    CAS  PubMed  Google Scholar 

  51. Varrier PK (1996) Indian medicinal plants: compendium of 500 species, vol 5. Orient Longman, Hyderabad, p 135

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Indira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swathy, S.S., Panicker, S., Nithya, R.S. et al. Antiperoxidative and Antiinflammatory Effect of Sida Cordifolia Linn. on Quinolinic Acid Induced Neurotoxicity. Neurochem Res 35, 1361–1367 (2010). https://doi.org/10.1007/s11064-010-0192-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0192-5

Keywords

Navigation