Skip to main content

Advertisement

Log in

Correlation between Choline Signal Intensity and Acetylcholine Level in Different Brain Regions of Rat

  • Original paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Acetylcholine is an important excitatory neurotransmitter, which plays a crucial role in synaptic transmission. The level of acetylcholine is decreased in the early stages of Alzheimer disease (AD), the most common neurodegenerative disease. Therefore, measurement of acetylcholine in the brain may help the clinical diagnosis of AD. However, the methods used till now to detect the brain acetylcholine level are invasive, which are neither recommended nor acceptable in the clinic. Acetylcholine is synthesized from choline-containing compounds (Cho), the latter can be estimated by noninvasive proton magnetic resonance spectroscopy (1H MRS). To explore whether the Cho signal intensity could be used to represent the acetylcholine level in the brain, we employed 1H MRS to detect the Cho signal, and simultaneously, we also used microdialysis and high-performance liquid chromatography (HPLC) to measure the level of acetylcholine in hippocampus, striatum, frontal cortex, and somatosensory barrel field (S1BF cortex) of rats, respectively. The results showed that the correlations between Cho signal intensity and acetylcholine level in hippocampus, striatum, frontal cortex, and S1BF cortex were, respectively, 0.823 (p = 0.044), 0.851 (p = 0.032), 0.817 (p = 0.047), and 0.822 (p = 0.045). The F-values of the regression model were, respectively, 8.404 (p = 0.044), 10.47 (p = 0.032), 8.000 (p = 0.047), and 8.326 (p = 0.045). And the derived regression equations were y = 0.67x + 1.363 (hippocampus), y = 5.398x + 6.684 (striatum), y = 0.656x + 0.564 (frontal cortex), and y = 0.394x + 1.127 (S1BF cortex), respectively (y means acetylcholine, and x means Cho). These data suggest that the Cho signal intensity observed by 1H MRS may be used as an indicator of acetylcholine level in different brain regions of the rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Auld DS, Kornecook TJ, Bastianetto S, Quirion R (2002) Alzheimer’s disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol 68:209–245

    Article  PubMed  CAS  Google Scholar 

  2. Iqbal K, Alonso AC, Chen S, Chohan M, El-Akkad E, Gong CX, Khatoon S, Li B, Liu F, Rahman A, Tanimukai H, Grundke-Iqbal I (2005) Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta 1739:198–210

    PubMed  CAS  Google Scholar 

  3. LaFerla FM, Oddo S (2005) Alzheimer’s disease: Abeta, tau and synaptic dysfunction. Trends Mol Med 11:170–176

    Article  PubMed  CAS  Google Scholar 

  4. Grundke-Iqbal I, Iqbal K, Tung Y, Quinlan M, Wisniewski HM, Binder L (1986a) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci 83:4913–4917

    Article  PubMed  CAS  Google Scholar 

  5. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung Y, Zaidi MS, Wisniewski HM (1986b) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem 261:6084–6089

    PubMed  CAS  Google Scholar 

  6. Lee VM, Balin BJ, Otvos LJ, Trojanowski JQ (1991) A68: a major subunit of paired helical filaments and derivatized forms of normal Tau. Science 251:675–678

    Article  PubMed  CAS  Google Scholar 

  7. Cras P, Kawai M, Siedlak S, Mulvihill P, Gambetti P, Lowery D, Gonzalez-DeWhitt P, Greenberg B, Perry G (1990) Neuronal and microglial involvement in beta-amyloid protein deposition in Alzheimer’s disease. Am J Pathol 137:241–216

    PubMed  CAS  Google Scholar 

  8. Mesulam M (2004) The cholinergic lesion of Alzheimer’s disease: pivotal factor or side show? Learn Mem 11:43–49

    Article  PubMed  Google Scholar 

  9. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791

    Article  PubMed  CAS  Google Scholar 

  10. Francis PT, Nordberg A, Arnold SE (2005) A preclinical view of cholinesterase inhibitors in neuroprotection: do they provide more than symptomatic benefits in Alzheimer’s disease? Trends Pharmacol Sci 26:104–111

    Article  PubMed  CAS  Google Scholar 

  11. Giacobini E (1998) Cholinesterase inhibitors for Alzheimer’s disease therapy: from tacrine to future applications. Neurochem Int 32:413–419

    Article  PubMed  CAS  Google Scholar 

  12. Bowen DM, Benton JS, Spillane JA, Smith CC, Allen SJ (1982) Choline acetyltransferase activity and histopathology of frontal neocortex from biopsies of demented patients. J Neurol Sci 57:191–202

    Article  PubMed  CAS  Google Scholar 

  13. Davies P, Maloney AJ (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 2:1403

    Article  PubMed  CAS  Google Scholar 

  14. Blennowa K, Vanmechelen E (2003) CSF markers for pathogenic processes in Alzheimer’s disease: diagnostic implications and use in clinical neurochemistry. Brain Res Bull 61:235–242

    Article  Google Scholar 

  15. Danielsen ER, Ross B (1999) Magnetic resonance spectroscopy diagnosis of neurological diseases. Marcel Dekker, New York

    Google Scholar 

  16. Gadian DG (1995) Nuclear magnetic resonance and its applications to living systems. 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  17. Marjanska M, Curran GL, Wengenack TM, Henry PG, Bliss RL, Poduslo JF, Jack CR, Ugurbil K, Garwood M (2005) Monitoring disease progression in transgenic mouse models of Alzheimer’s disease with proton magnetic resonance spectroscopy. Proc Natl Acad Sci 102:11906–11910

    Article  PubMed  CAS  Google Scholar 

  18. Boulanger Y, Labelle M, Khiat A (2000) Role of phospholipase A(2) on the variations of the choline signal intensity observed by 1H magnetic resonance spectroscopy in brain diseases. Brain Res Rev 33:380–389

    Article  PubMed  CAS  Google Scholar 

  19. Sartorius A, Schloss P, Vollmayr B, Ende G, Neumann-Haefelin C, Hoehn M, Henn FA (2006) Correlation between MR-spectroscopic rat hippocampal choline levels and phospholipase A2. World J Biol Psychiatry 7:246–250

    Article  PubMed  Google Scholar 

  20. Jack CR, Garwood M, Wengenack T, Borowski B, Curran GL, Lin G, Adriany G, Grohn OH, Grimm R, Poduslo JF (2004) In vivo visualization of Alzheimer’s amyloid plaques by magnetic resonance imaging in transgenic mice without a contrast agent. Magn Reson Med 52:1263–1271

    Article  PubMed  Google Scholar 

  21. Paxinos G, Watson CJ (1996) The rat brain in stereotaxic coordinates. 2nd edn. Academic, New York

    Google Scholar 

  22. Giovannini MG, Ceccarelli I, Molinari B, Cecchi M, Goldfarb J, Blandina P (1998) Serotonergic modulation of acetylcholine release from cortex of freely moving rats. J Pharmacol Exp Ther 285:1219–1225

    PubMed  CAS  Google Scholar 

  23. Klintsova AY, Greenough WT (1999) Synaptic plasticity in cortical systems. Curr Opin Neurobiol 9:203–208

    Article  PubMed  CAS  Google Scholar 

  24. Gold PE (2003) Acetylcholine modulation of neural systems involved in learning and memory. Neurobiol Learn Mem 80:194–210

    Article  PubMed  CAS  Google Scholar 

  25. Tian Q, Lin ZQ, Wang XC, Chen J, Wang Q, Gong CX, Wang JZ (2004) Injection of okadaic acid into the meynert nucleus basalis of rat brain induces decreased acetylcholine level and spatial memory deficit. Neuroscience 126:277–284

    Article  PubMed  CAS  Google Scholar 

  26. Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239

    Article  PubMed  CAS  Google Scholar 

  27. Mark GP, Weinberg JB, Rada PV, Hoebel BG (1995) Extracellular acetylcholine is increased in the nucleus accumbens following the presentation of an aversively conditioned taste stimulus. Brain Res 688:184–188

    Article  PubMed  CAS  Google Scholar 

  28. Miranda MI, Ramirez-Lugo L, Bermudez-Rattoni F (2000) Cortical cholinergic activity is related to the novelty of the stimulus. Brain Res 882:230–235

    Article  PubMed  CAS  Google Scholar 

  29. Arnold HM, Burk JA, Hodgson EM, Sarter M, Bruno JP (2002) Differential cortical acetylcholine release in rats performing a sustained attention task versus behavioral control tasks that do not explicitly tax attention. Neuroscience 114:451–460

    Article  PubMed  CAS  Google Scholar 

  30. Everitt BJ, Robbins TW (1997) Central cholinergic systems and cognition. Annu Rev Psychol 48:649–684

    Article  PubMed  CAS  Google Scholar 

  31. Ragozzino ME (2003) Acetylcholine actions in the dorsomedial striatum support the flexible shifting of response patterns. Neurobiol Learn Mem 80:257–267

    Article  PubMed  CAS  Google Scholar 

  32. Ando S, Tadenuma T, Tanaka Y, Fukui F, Kobayashi S, Ohashi Y, Kawabata T (2001) Enhancement of learning capacity and cholinergic synaptic function by carnitine in aging rats. J Neurosci Res 66:266–271

    Article  PubMed  CAS  Google Scholar 

  33. Imperato A, Ramacci MT, Angelucci L (1989) Acetyl-l-carnitine enhances acetylcholine release in the striatum and hippocampus of awake freely moving rats. Neurosci Lett 107:251–255

    Article  PubMed  CAS  Google Scholar 

  34. Janiri L, Falcone M, Persico A, Tempesta E (1991) Activity of L-carnitine and L-acetylcarnitine on cholinoceptive neocortical neurons of the rat in vivo. J Neural Transm Gen Sect 86:135–146

    Article  PubMed  CAS  Google Scholar 

  35. Katz-Brull R, Koudinov AR, Degani H (2005) Direct detection of brain acetylcholine synthesis by magnetic resonance spectroscopy. Brain Res 1048:202–210

    Article  PubMed  CAS  Google Scholar 

  36. Picconi B, Barone I, Pisani A, Nicolai R, Benatti P, Bernardi G, Calvani M, Calabresi P (2006) Acetyl-l-carnitine protects striatal neurons against in vitro ischemia: the role of endogenous acetylcholine. Neuropharmacology 50:917–923

    Article  PubMed  CAS  Google Scholar 

  37. Michel V, Yuan Z, Ramsubir S, Bakovic M (2006) Choline transport for phospholipid synthesis. Exp Biol Med (Maywood) 231:490–504

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hao Lei (Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, People’s Republic of China) for scientific discussion. This work was supported in part by the National Natural Science Foundation of China (30400103) and the National Science and Technology Committee of China (2006CB500703, 2006AA02Z4A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Zhi Wang.

Additional information

X.-C. Wang, X.-X. Du, and Q. Tian equally contributed to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, XC., Du, XX., Tian, Q. et al. Correlation between Choline Signal Intensity and Acetylcholine Level in Different Brain Regions of Rat. Neurochem Res 33, 814–819 (2008). https://doi.org/10.1007/s11064-007-9509-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9509-4

Keywords

Navigation