Skip to main content
Log in

Neuroprotective Effects of N-acetylcysteine on Experimental Closed Head Trauma in Rats

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

N-acetylcysteine (NAC) is a precursor of glutathione, a potent antioxidant, and a free radical scavenger. The beneficial effect of NAC on nervous system ischemia and ischemia/reperfusion models has been well documented. However, the effect of NAC on nervous system trauma remains less understood. Therefore, we aimed to investigate the therapeutic efficacy of NAC with an experimental closed head trauma model in rats. Thirty-six adult male Sprague–Dawley rats were randomly divided into three groups of 12 rats each: Group I (control), Group II (trauma-alone), and Group III (trauma+NAC treatment). In Groups II and III, a cranial impact was delivered to the skull from a height of 7 cm at a point just in front of the coronal suture and over the right hemisphere. Rats were sacrificed at 2 h (Subgroups I-A, II-A, and III-A) and 12 h (Subgroups I-B, II-B, and III-B) after the onset of injury. Brain tissues were removed for biochemical and histopathological investigation. The closed head trauma significantly increased tissue malondialdehyde (MDA) levels (P<0.05), and significantly decreased tissue superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities (P<0.05), but not tissue catalase (CAT) activity, when compared with controls. The administration of a single dose of NAC (150 mg/kg) 15 min after the trauma has shown protective effect via decreasing significantly the elevated MDA levels (P<0.05) and also significantly (P<0.05) increasing the reduced antioxidant enzyme (SOD and GPx) activities, except CAT activity. In the trauma-alone group, the neurons became extensively dark and degenerated into picnotic nuclei. The morphology of neurons in the NAC treatment group was well protected. The number of neurons in the trauma-alone group was significantly less than that of both the control and trauma+NAC treatment groups. In conclusion, the NAC treatment might be beneficial in preventing trauma-induced oxidative brain tissue damage, thus showing potential for clinical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Siesjo BK (1993) Basic mechanisms of traumatic brain damage. Ann Emerg Med 22:959–969

    Article  PubMed  CAS  Google Scholar 

  2. Marshall LF (2000) Head injury: recent past, present, and future. Neurosurgery 47:546–561

    Article  PubMed  CAS  Google Scholar 

  3. Ozsuer H, Gorgulu A, Kiris T, Cobanoglu S (2005) The effects of memantine on lipid peroxidation following closed-head trauma in rats. Neurosurg Rev 28:143–147

    Article  PubMed  Google Scholar 

  4. Ellis EF, Dodson LY, Police RJ (1991) Restoration of cerebrovascular responsiveness to hyperventilation by the oxygen radical scavenger N-acetylcysteine following experimental traumatic brain injury. J Neurosurg 75:774–749

    PubMed  CAS  Google Scholar 

  5. Sastry PS, Rao KS (2000) Apoptosis and the nervous system. J Neurochem 74:1–20

    Article  PubMed  CAS  Google Scholar 

  6. Conti AC, Raghupathi R, Trojanowski JQ, McIntosh TK (1998) Experimental brain injury induces regionally distinct apoptosis during the acute and delayed post-traumatic period. J Neurosci 18:5663–5672

    PubMed  CAS  Google Scholar 

  7. Kaya SS, Mahmood A, Li Y, Yavuz E, Goksel M, Chopp M (1999) Apoptosis and expression of p53 response proteins and cyclin D1 after cortical impact in rat brain. Brain Res 818:23–33

    Article  PubMed  CAS  Google Scholar 

  8. Rink A, Fung KM, Trojanowski JQ, Lee VM, Neugebauer E, McIntosh TK (1995) Evidence of apoptotic cell death after experimental traumatic brain injury in the rat. Am J Pathol 47:1575–1583

    Google Scholar 

  9. Charriaut-Marlangue C (1999) Apoptosis and cerebral ischemia. Ann Pharm Fr 57:309–313

    PubMed  CAS  Google Scholar 

  10. Michel PP, Lambeng N, Ruberg M (1999) Neuropharmacologic aspects of apoptosis: significance for neurodegenerative diseases. Clin Neuropharmacol 22:137–150

    PubMed  CAS  Google Scholar 

  11. Mirabella M, Di Giovanni S, Silvestri G, Tonali P, Servidei S (2000) Apoptosis in mitochondrial encephalomyopathies with mitochondrial DNA mutations: a potential pathogenic mechanism. Brain 123:93–104

    Article  PubMed  Google Scholar 

  12. Villa P, Kaufmann SH, Earnshaw WC (1997) Caspases and caspase inhibitors. Trends Biochem Sci 22:388–393

    Article  PubMed  CAS  Google Scholar 

  13. Allen JW, Knoblach SM, Faden AI (1999) Combined mechanical trauma and metabolic impairment in vitro induces NMDA receptor-dependent neuronal cell death and caspase-3 dependent apoptosis. FASEB J 13:1875–1882

    PubMed  CAS  Google Scholar 

  14. Yakovlev AG, Knoblach SM, Fan L, Fox GB, Goodnight R, Faden AI (1997) Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J Neurosci 17:7415–7424

    PubMed  CAS  Google Scholar 

  15. Clark RS, Kochanek PM, Watkins SC, Chen M, Dixon CE, Seidberg NA, Melick J, Loeffert JE, Nathaniel PD, Jin KL, Graham SH (2000) Caspase-3 mediated neuronal death after traumatic brain injury in rats. J Neurochem 74:740–753

    Article  PubMed  CAS  Google Scholar 

  16. Porter AG, Janicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6:99–104

    Article  PubMed  CAS  Google Scholar 

  17. McCall JM, Braughler JM, Hall ED (1987) Lipide peroxidation and the role of oxygen radicals in CNS injury. Acta Anaesthesiol Belg 38:373–379

    PubMed  CAS  Google Scholar 

  18. Ikeda Y, Long DM (1990) The molecular basis of brain injury and brain edema: the role of oxygen free radicals. Neurosurgery 27:1–11

    Article  PubMed  CAS  Google Scholar 

  19. Clausen F, Lundqvist H, Ekmark S, Lewen A, Ebendal T, Hillered L (2004) Oxygen free radical-dependent activation of extracellular signal-regulated kinase mediates apoptosis-like cell death after traumatic brain injury. J Neurotrauma 21:1168–1182

    Article  PubMed  Google Scholar 

  20. Faden AI (1989) TRH analogYM-14673 improves outcome following traumatic brain and spinal cord injury in rats: dose response studies. Brain Res 486:228–235

    Article  PubMed  CAS  Google Scholar 

  21. Aruoma OI, Halliwell B, Hoey BM, Butler J (1989) The antioxidant effect of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med 6:593–597

    Article  PubMed  CAS  Google Scholar 

  22. Santangelo F (2003) Intracellular thiol concentration modulating inflammatory response: influence on the regulation of cell functions through cysteine prodrug approach. Curr Med Chem 10:2599–2610

    Article  PubMed  CAS  Google Scholar 

  23. Warner DS (2004) Oxidants, antioxidants and the ischemic brain. J Exp Biol 207: 3221–3231

    Article  PubMed  CAS  Google Scholar 

  24. Krasowska A, Konat GW (2004) Vulnerability of brain tissue to inflammatory oxidant, hypochlorous acid. Brain Res 997:176–184

    Article  PubMed  CAS  Google Scholar 

  25. Demir S, Inal-Erden M (1998) Pentoxifylline and N-acetylcysteine in hepatic ischemia/reperfusion injury. Clin Chim Acta 275: 127–135

    Article  PubMed  CAS  Google Scholar 

  26. Cakir O, Erdem K, Oruc A, Kilinc N, Eren N (2003) Neuroprotective effect of N-acetylcysteine and hypothermia on the spinal cord ischemia-reperfusion injury. Cardiovasc Surg 11: 375–379

    Article  PubMed  Google Scholar 

  27. Farr SA, Poon HF, Dogrukol-Ak D, Drake J, Banks WA, Eyerman E, Butterfield DA, Morley JE (2003) The antioxidants alpha-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. J Neurochem 84:1173–1183

    Article  PubMed  CAS  Google Scholar 

  28. Paintlia MK, Paintlia AS, Barbosa E, Singh I, Singh AK (2004) N-acetylcysteine prevents endotoxin-induced degeneration of oligodendrocyte progenitors and hypomyelination in developing rat brain. J Neurosci Res 78:347–361

    Article  PubMed  CAS  Google Scholar 

  29. Hart AM, Terenghi G, Kellerth JO, Wiberg M (2004) Sensory neuroprotection, mitochondrial preservation, and therapeutic potential of N-acetyl-cysteine after nerve injury. Neuroscience 125:91–101

    Article  PubMed  CAS  Google Scholar 

  30. Thomas Dickey D, Muldoon LL, Kraemer DF, Neuwelt EA (2004) Protection against cisplatin-induced ototoxicity by N-acetylcysteine in a rat model. Hear Res 193:25–30

    Article  PubMed  CAS  Google Scholar 

  31. Nicoletti VG, Marino VM, Cuppari C, Licciardello D, Patti D, Purello VS, Stella AM (2005) Effect of antioxidant diets on mitochondrial gene expression in rat brain during aging. Neurochem Res 30:737–752

    Article  PubMed  CAS  Google Scholar 

  32. Cuzzocrea S, Mazzon E, Costantino G, Serraino I, Dugo L, Calabro G, Cucinotta G, De Sarro A, Caputi AP (2000) Effects of N-acetylcysteine in a rat model of ischemia and reperfusion injury. Cardiovasc Res 47:537–548

    Article  PubMed  CAS  Google Scholar 

  33. Sekhon B, Sekhon C, Khan M, Patel SJ, Singh I, Singh AK (2003) N-Acetyl cysteine protects against injury in a rat model of focal cerebral ischemia. Brain Res 971:1–8

    Article  PubMed  CAS  Google Scholar 

  34. Shen WH, Zhang CY, Zhang GY (2003) Antioxidants attenuate reperfusion injury after global brain ischemia through inhibiting nuclear factor-kappa B activity in rats. Acta Pharmacol Sin 24:1125–1130

    PubMed  CAS  Google Scholar 

  35. Khan M, Sekhon B, Jatana M, Giri S, Gilg AG, Sekhon C, Singh I, Singh AK (2004) Administration of N-acetylcysteine after focal cerebral ischemia protects brain and reduces inflammation in a rat model of experimental stroke. J Neurosci Res 76:519–527

    Article  PubMed  CAS  Google Scholar 

  36. Shapira Y, Shohami E, Sidi S, Soffer D, Freeman S, Cotev S (1988) Experimental closed head injury in rats: mechanical, pathophysiologic and neurologic properties. Crit Care Med 16:258–265

    Article  PubMed  CAS  Google Scholar 

  37. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid rection. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  38. Lowry OH, Rosebrough NJ, Farr AL, Randall RI (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  39. Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34:497–500

    PubMed  CAS  Google Scholar 

  40. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterisation of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    PubMed  CAS  Google Scholar 

  41. Aebi H (1974) Catalase in vitro. Methods Enzymol 105:121–126

    Article  Google Scholar 

  42. Hsu SM, Raine L, Fanger H (1981) Use of Avidin-Biotin-Peroxidase complex (ABC) in immunperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580

    PubMed  CAS  Google Scholar 

  43. Sochman J (2002) N-acetylcysteine in acute cardiology: 10 years later: what do we know and what would we like to know. J Am Coll Cardiol 39:1422–1428

    Article  PubMed  CAS  Google Scholar 

  44. Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D (2002) Antioxidant therapy in acute central nervous system injury: current state. Pharmacol Rev 54:271–284

    Article  PubMed  CAS  Google Scholar 

  45. Smith SL, Andrus PK, Zhang JR, Hall ED (1994) Direct measurement of hydroxyl radicals, lipid peroxidation, and blood–brain barrier disruption following unilateral cortical impact head injury in the rat. J Neurotrauma 11:393–404

    Article  PubMed  CAS  Google Scholar 

  46. Hall ED (1995) Inhibition of lipid peroxidation in central nervous system trauma and ischemia. J Neurol Sci 134(Suppl):79–83

    Article  PubMed  Google Scholar 

  47. Thomale UW, Griebenow M, Kroppenstedt SN, Unterberg AW, Stover JF (2006) The effect of N-acetylcysteine on posttraumatic changes after controlled cortical impact in rats. Intensive Care Med 32:149–155

    Article  PubMed  CAS  Google Scholar 

  48. Ustun ME, Duman A, Ogun CO, Sumer F, Gubbilek M (2001) Effects of deferoxamine on tissue superoxide dismutase and glutathione peroxidase levels in experimental head trauma. J Trauma 51:22–25

    Article  CAS  Google Scholar 

  49. Ozben T (1989) Mechanisms involved in neuronal damage. In: Ozben T (ed) Free radicals, oxidative stress and antioxidants. Plenum Press, New York, London, pp163–189

    Google Scholar 

  50. Jayalakshmi K, Sairam M, Singh SB, Sharma SK, Ilavazhagan G, Banerjee PK (2005) Neuroprotective effect of N-acetyl cysteine on hypoxia-induced oxidative stress in primary hippocampal culture. Brain Res 1046:97–104

    Article  PubMed  CAS  Google Scholar 

  51. Nehru B, Kanwar SS (2004) N-acetylcysteine exposure on lead-induced lipid peroxidative damage and oxidative defense system in brain regions of rats. Biol Trace Elem Res 101:257–264

    Article  PubMed  CAS  Google Scholar 

  52. Southorn PA (1988) Free radicals in medicine. Chemical Nature and biological reactions. Mayo Clin Proc 63:381–389

    PubMed  CAS  Google Scholar 

  53. Ferrari G, Green LA (1995) N-acetylcysteine (d- and l-stereoisomers) prevents apoptotic death of neuronal cells. J Neurosci 15:2857–2866

    PubMed  CAS  Google Scholar 

  54. Juurlink BH, Paterson PG (1998) Review of oxidative stress in brain and spinal cord injury: suggestions for pharmacological and nutritional management strategies. J Spinal Cord Med 21:309–334

    PubMed  CAS  Google Scholar 

  55. Tripathi Y, Hegde BM, Rai YS, Raghuveer CV (1999) Effect of N-acetylcysteine and sodium nitrite on myocardial reperfusion injury. Indian J Physiol Pharmacol 43:518–520

    PubMed  CAS  Google Scholar 

  56. Hashimoto K, Tsukada H, Nishiyama S, Fukumato D, Kakiuchi T, Shimizu E, Iyo M (2004) Protective effects of N-acetyl-l-cysteine on the reduction of dopamine transporters in the striatum of monkeys treated with methamphetamine. Neuropsychopharmacol 29:2018–2023

    Article  CAS  Google Scholar 

  57. Tian H, Zhang G, Li H, Zhang Q (2003) Antioxidant NAC and AMPA/KA receptor antagonist DNQX inhibited JNK3 activation following global ischemia in rat hippocampus. Neurosci Res 46:191–197

    PubMed  CAS  Google Scholar 

  58. Kaynar MY, Erdincler P, Tadayyon E, Belce A, Gumustas K, Ciplak N (1998) Effect of nimodipine and N-acetylcysteine on lipid peroxidation after experimental spinal cord injury. Neurosurg Rev 21:260–264

    Article  PubMed  CAS  Google Scholar 

  59. Xiong Y, Peterson PL, Lee CP (1999) Effect of N-acetylcysteine on mitochondrial function following traumatic brain injury in rats. J Neurotrauma 16:1067–1082

    Article  PubMed  CAS  Google Scholar 

  60. Yi JK, Hazell AS (2005) N-acetylcysteine attenuates early induction of heme oxygenase-1 following traumatic brain injury. Brain Res 1033:13–19

    Article  PubMed  CAS  Google Scholar 

  61. Unterberg AW, Stroop R, Thomale UW, Kiening KL, Pauser S, Vollmann W (1997) Characterisation of brain edema following controlled cortical impact injury. Acta Neurochir Suppl 70:106–108

    PubMed  CAS  Google Scholar 

  62. Yang X, Yang S, Zhang J, Xue L, Hu Z (2002) Role of Caspase-3 in neuronal apoptosis after acute brain injury. Chin J Traumatol 5:250–253

    PubMed  Google Scholar 

  63. Lu J, Moochhala S, Shirhan M, Ng KC, Teo AL, Tan MH, Moore XL, Wong MC, Ling EA (2003) Neuroprotection by aminoguanidine after lateral fluid-percussive brain injury in rats: a combined magnetic resonance imaging, histopathologic and functional study. Neuropharmacology 44:253–263

    Article  PubMed  CAS  Google Scholar 

  64. Cernak I, Chapman SM, Hamlin GP, Vink R (2002) Temporal characterisation of pro- and anti-apoptotic mechanisms following diffuse traumatic brain injury in rats. J Clin Neurosci 9:565–572

    Article  PubMed  Google Scholar 

  65. Nicholson DW (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6:1028–1042

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Kanter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hicdonmez, T., Kanter, M., Tiryaki, M. et al. Neuroprotective Effects of N-acetylcysteine on Experimental Closed Head Trauma in Rats. Neurochem Res 31, 473–481 (2006). https://doi.org/10.1007/s11064-006-9040-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9040-z

Keywords

Navigation